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Last Lecture

1 Topic modeling and topic segmentation
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Today’s Lecture

1 Interpretability in Health Care

2 Interpretable models in AI
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Interpretability and Explainability in health care

1 Legality

2 Liability
3 Confidence in the models
4 Wider Adoption
5 Real learning vs spurious learning
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ICE #1

A/B testing

A clinic wants to incorporate a medical diagnostic tool into its workflow.
The idea is to help support doctors making faster diagnosis. The clinic
decides to do a A/B test where there is a treatment (using AI diagnostics
in pipeline) and a control (status quo). Patients are randomly assigned to
treatment or control. After a 4 week study, the clinic saw a 3 %
improvement in F�score in treatment over control that was statistically
significant. Should the clinic go ahead and replace the control with the
treatment in their workflow?

a) Yes
b) No
c) Needs further investigation
d) Small di↵erence - so pick either
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Explaining Risk to Patients

1 When multiple treatment options, there’s a need to explain the pros
and cons

2 Explainable AI helps provide data to explain the risks involved with
treatments

3 Generic risk vs personalized risk

4 Generic risk: Patients taking this treatment protocol have a 75%
chance of success

5 Personalized risk: Patients with your kind of profile that take this
treatment have a 80% chance of success
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Personalized risk/success model

Breakout brainstorm (5 mins)

Let’s say you want to build a personalized risk/success assessment tool for
di↵erent treatment protocols in a cancer clinic. Examples of protocols
could include chemotherapy, biological drug therapies, radiation therapy
and so on. A patient and their family might aim for a cure for cancer
(maximize success) or aim for better quality of life (minimize risk to life).
Given that the clinic records patient profiles and their disease and
treatment history, how would you go about developing a explainable model
to explain the risk/success for di↵erent patient profiles? Discuss the data,
models and metrics you will use to measure the goodness of your AI
explainable model.
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Readmission Risk
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Readmission Risk Modeling

Saving costs and time

Partners Connected Health and Hitachi announced a AI based tech in
2017 to predict probability of readmission for heart failure patients. This
led to significant time and cost savings for patients and hospitals using the
model. They use deep models to predict but explainable models to explain
it with AUC of 0.7!
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Good models to explain patient risk?

ICE #2

Which model would more likely be implemented in a clincal setting to
explain the personalized risk/success rate of treatments to patients?

a) Deep Learning
b) Logistic Regression
c) Decision Trees
d) k-means
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Alternative models to explain black-box AI models

1 Let’s say a deep learning model attains high success rate for success
assessment of treatment protocols

2 Clearly, it’s not a first choice from explainability standpoint

3 For the sake of explain-ability, can a simpler model be used to
correlate input features with the target?
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Interpretable vs Explainable AI
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Simpler model for exaplinability

Breakout brainstorm (5 mins)

You have a deep learning model that gives out personalized success
percentage of a treatment protocol for patients. A patient asks to explain
why the success of a particular treatment for her is higher than the
average success rate? You look towards a simpler ML model to explain the
results of a deep learning model. Can you think of designing a simpler ML
model that can help identify which input features (e.g. age or medical
history, past conditions, etc) are strongly connected to the target (high,
medium or low success for example)?
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DT for explainability

1 Train a DT model on training data along with the black box model

2 Use the DT model to find a “path” to explain the prediction of the
black box model

3 What are the pros and cons?

4 Can we do better?

5 Find a DT from a random forest that can explain the black-box
model the best. More compute time but better explanation!
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DT for explainability
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Biases in AI

ICE #3

A clinic that primarily sees elderly patients with heart issues is starting to
see anomaly in its AI predictions for young patients coming in with heart
issues. The 5 year success rate of stent implant in heart for patients
having mytral valve regurgitation (back flow of blood in heart, which can
be fixed by a stent that keeps arteries unclogged) is consistently
underestimated in the anomalous predictions. On their training and test
data, the AI is able to gain more than 95% accuracy in risk/success
assessment. What might be the most plausible reason for the AI model
generating anomalous predictions?

a) Random fluctuations in prediction accuracy
b) Not enough data in training
c) Age bias in data
d) Unaccounted factors
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Next Lecture

1 Explaining Deep Learning Models using input attribution in the model

2 Visualization tools to understand deep learning models better
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