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Logistics

Lectures: Monday in person, Wednesday online

Grading O�ce Hours: Saturday, 5-6 pm (Mathew)

TA o�ce hours: Sunday, 5-6 pm (Ayush)

Quiz Section: Sunday, 12 - 1 pm (Ayush)

Karthik O�ce hours: Wednesday, 6-6:30 pm (Karthik)

Programming Assignment 1: Due Sunday night

Surveys: Fill it out - So we can be aligned on hours, topics, etc and
have a good feedback loop!
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Last lecture

Classification - Logistic Regression

Overfitting in Machine Learning

Methods to overcome overfitting
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Lectures Makeup (Pie Chart)
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Today

1 Data pre-processing

2 Diabetes data set

3 Decision Trees for Diabetes classification
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Data Transformations

1 Data-cleaning: What does this refer to?

2 Data-cleaning: Removing outliers/extreme feature values, handling
missing data

3 Missing Data: Let’s say a few columns have missing data - How
does one handle it?

4 Outlier removal: How do you remove outliers from data?

5 Data Normalization: What is data normalization and why do we
normalize?

6 Data pre-processing: How is data pre-porcessing di↵erent from data
cleaning? What else does data pre-processing entail?

7 Feature engineering: Feature engineering is one of the data
pre-processing steps - Where we transform raw data into useful
features. What are some examples?
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ICE #0

You are tasked with detecting risk of diabetes for a segment of the
university population who volunteer to take part in a study. Post data
collection, you notice that some of the patients with low risk diabetes have
gluocse levels that don’t add up. What step in data pre-processing will
help you make better predictions?

Data cleaning

Outlier removal

Data normalization

Feature engineering
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Decision Trees Motivation
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XOR Function

Linearly Separable?
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XOR Function

Can XOR be modeled by Decision Tree?
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Learning Decision Trees

Learning

The learning for Decision Trees boils down to how to build the tree.
Which feature to split on first? Second? And so on... Also, when to stop
building the tree

Intuition behind building Decision Trees

Start splitting on features that give the maximum information gain or
reduce the uncertainty in prediction/reduce the classification error. This is
done iteratively and hence can be thought of as a greedy procedure.
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Case Study: What factors increase risk of chronic diabetes
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Intelligent Diabetes Risk Detection
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Sample Data
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Decision Trees
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Growing Trees

Questions

Which features are ”good”?

When to stop growing a tree?
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Visual Notation
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Decision stump 1
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Making predictions
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Making predictions
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Split selection
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Split E↵ectiveness
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Calculate Classification Error
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Split on Glucose
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Split on Skin Thickness (ICE #1)
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Split on Skin Thickness (ICE #1)

Whats the misclassification error of splitting on skin thickness?
a 0.07

b 0.154
c 0.23

d 0.31
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Split Winner
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Split Thickness
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BMI
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Case Study: What factors increase risk of chronic diabetes
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Split selection

Split selection procedure

Given a subset of data set, M at a node

For each remaining feature hi (x), split M by feature hi (x) and
compute classification error

Pick the feature i to split with minimum classification error
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Decision Tree Classification as a Greedy Procedure

DT Classifier Training procedure

If classification splits satisfy criteria (e.g. low classification error), stop,
Else, split further using split selection procedure.
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Stopping
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Stopping
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Stopping criteria in practice

A Splits with few data points can lead to over-fitting. Example

B Max tree depth can be a stopping criteria to prevent over-fitting.

C Although theoretically, can aim for 0 classification error - This would
lead to over-fitting. Use above 2 to stop earlier.

D No standard ‘regularization’ for DTs like for Logistic Regression.
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Recursive Splits
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Second level DT
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ICE #2

Classification error

The classification error for the DT above is:
a 0.07

b 0.154
c 0.23

d 0.31
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Threshold splits for real valued features
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Choosing Split Threshold for Numeric Features

A Grid search?

B Numeric vs Categorical Features: Can recurse more than once on a
numeric feature. Can’t do the same for categorical feature. Why?
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Decision Boundary level 1 k Numeric Features
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Decision Boundary level 2 k Numeric Features
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Decision Boundary level 3 k Numeric Features
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Decision Trees Summary

Summary

Intuitive way to classify by making decsisions by walking down the tree

Can learn complex non-linear decision boundaries (unlike logistic
regression)

Prone to overfit as tree depth increases (unlike logistic regression)

Splitting at nodes with few data points can lead to overfitting

Over-fitting can be avoided by early stopping (depth or error)

Improve Decision Trees - Random Forests - Next Lecture!
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Decision Trees vs Logistic Regression

1 Both are interpretable in di↵erent ways

2 Decision trees mimick how humans make decisions and are useful in
certain contexts - Like medical diagnosis or other places where
number of features is not too large

3 Decision Trees can easily learn non-linear decision boundaries while
Logistic Regression learns linear decision boundary

4 Decision Tree has a higher model complexity as compared to Logistic
Regression

5 Logistic Regerssion is less prone to over-fitting than Decision Trees
with large number of features
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