EEP 596: AI and Health Care || Lecture 3 Dr. Karthik Mohan

Univ. of Washington, Seattle

Apr 4, 2022

• Lectures: Monday in person, Wednesday online

- Lectures: Monday in person, Wednesday online
- Grading Office Hours: Saturday, 5-6 pm (Mathew)

- Lectures: Monday in person, Wednesday online
- Grading Office Hours: Saturday, 5-6 pm (Mathew)
- TA office hours: Sunday, 5-6-pm (Ayush)
 12-1 P/

- Lectures: Monday in person, Wednesday online
- Grading Office Hours: Saturday, 5-6 pm (Mathew)
- TA office hours: Sunday, 5-6 pm (Ayush)
- Quiz Section: Sunday, 12 1 pm (Ayush) 5- C PH

- Lectures: Monday in person, Wednesday online
- Grading Office Hours: Saturday, 5-6 pm (Mathew)
- TA office hours: Sunday, 5-6 pm (Ayush)
- Quiz Section: Sunday, 12 1 pm (Ayush)
- Karthik Office hours: Wednesday, 6-6:30 pm (Karthik)

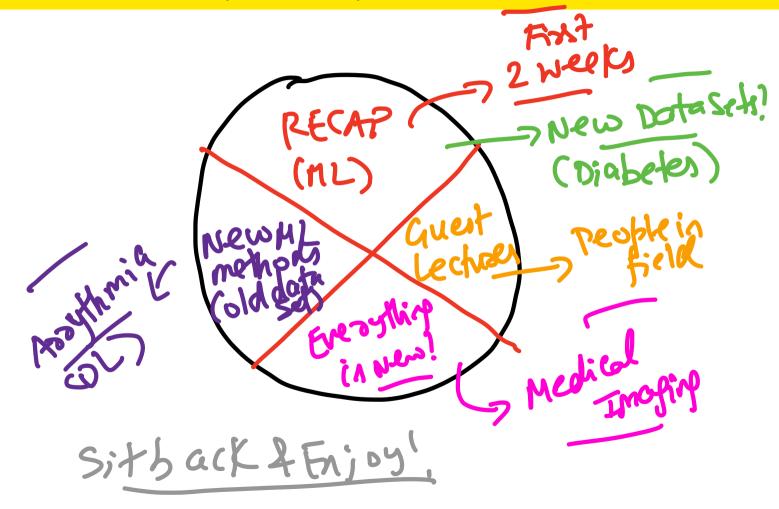
- Lectures: Monday in person, Wednesday online
- Grading Office Hours: Saturday, 5-6 pm (Mathew)
- TA office hours: Sunday, 5-6 pm (Ayush)
- Quiz Section: Sunday, 12 1 pm (Ayush)
- Karthik Office hours: Wednesday, 6-6:30 pm (Karthik)
- Programming Assignment 1: Due Sunday night

- Lectures: Monday in person, Wednesday online
- Grading Office Hours: Saturday, 5-6 pm (Mathew)
- TA office hours: Sunday, 5-6 pm (Ayush)
- Quiz Section: Sunday, 12 1 pm (Ayush)
- Karthik Office hours: Wednesday, 6-6:30 pm (Karthik)
- Programming Assignment 1: Due Sunday night
- **Surveys:** Fill it out So we can be aligned on hours, topics, etc and have a good feedback loop!

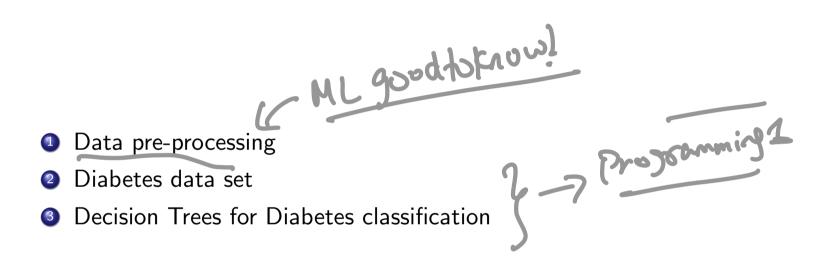
Last lecture

Classification - Logistic Regression
Overfitting in Machine Learning
Methods to overcome overfitting
Methods to overcome overfitting
Selechio

Lectures Makeup (Pie Chart)

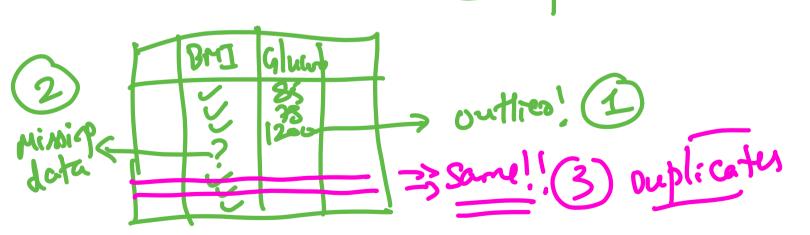


Today



Data-cleaning: What does this refer to? -> Removing | fiftering bad entries

- **Data-cleaning:** What does this refer to?
- Data-cleaning: missing data
 Removing outliers/extreme feature values, handling
 (1)
 (2)
 (3) Dublicates



- Data-cleaning: What does this refer to?
- Oata-cleaning: Removing outliers/extreme feature values, handling missing data
- Let's say a few columns have missing data How **Omega Series States Omega Series Omega Series** does one handle it? here Tracel

6 / 51

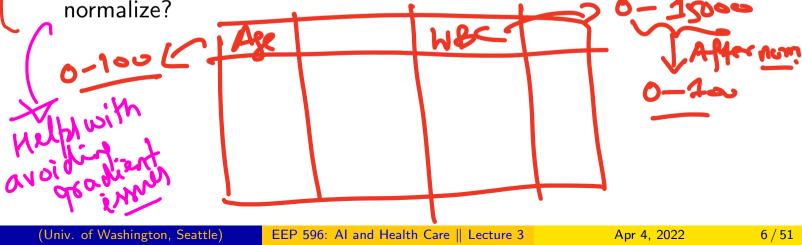
- Data-cleaning: What does this refer to?
- Data-cleaning: Removing outliers/extreme feature values, handling missing data
- Objective Missing Data: Let's say a few columns have missing data How does one handle it?
- Outlier removal: How do you remove outliers from data?

Colum autier

Apr 4, 2022

methods

- Output Data-cleaning: What does this refer to?
 - Oata-cleaning: Removing outliers/extreme feature values, handling missing data
 - Missing Data: Let's say a few columns have missing data How does one handle it?
 - Outlier removal: How do you remove outliers from data?
 - **5** Data Normalization: What is data normalization and why do we



- Data-cleaning: What does this refer to?
- Oata-cleaning: Removing outliers/extreme feature values, handling missing data
- In the second second
- **Outlier removal:** How do you remove outliers from data?
- Data Normalization: What is data normalization and why do we normalize?
- **Data pre-processing:** How is data pre-porcessing different from data cleaning? What else does data pre-processing entail?

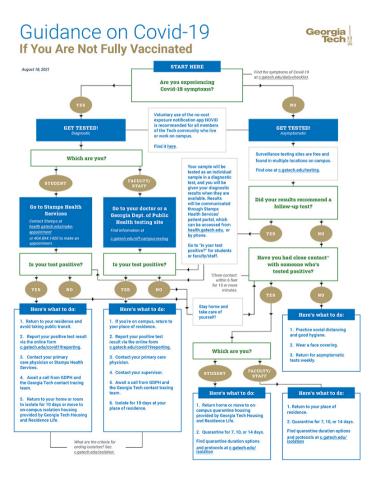
K-bracent

- **Data-cleaning:** What does this refer to?
- Data-cleaning: Removing outliers/extreme feature values, handling missing data
- Missing Data: Let's say a few columns have missing data How does one handle it?
- Outlier removal: How do you remove outliers from data?
- Data Normalization: What is data normalization and why do we normalize?
- Oata pre-processing: How is data pre-porcessing different from data cleaning? What else does data pre-processing entail?

Feature engineering: Feature engineering is one of the data pre-processing steps - Where we transform raw data into useful features. What are some examples? You are tasked with detecting risk of diabetes for a segment of the university population who volunteer to take part in a study. Post data collection, you notice that some of the patients with low risk diabetes have gluocse levels that don't add up. What step in data pre-processing will help you make better predictions?

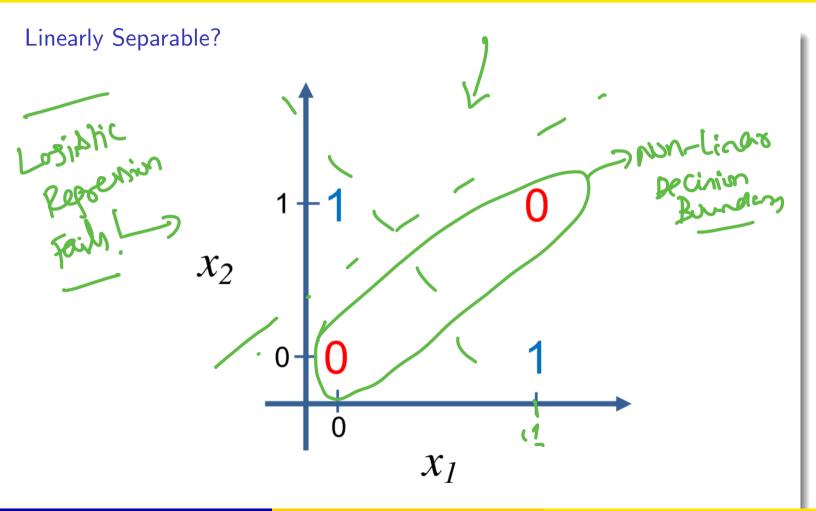
- Data cleaning
- Outlier removal
- Data normalization
- Feature engineering

Decision Trees Motivation

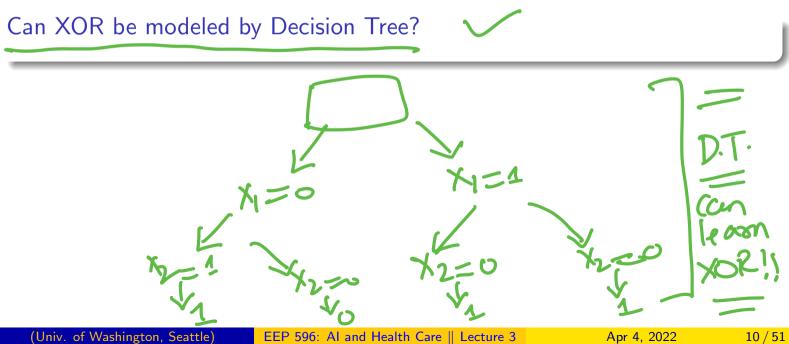


EEP 596: AI and Health Care || Lecture 3

XOR Function



XOR Function



(Univ. of Washington, Seattle)

EEP 596: AI and Health Care || Lecture 3

Learning

The learning for Decision Trees boils down to how to build the tree. Which feature to split on first? Second? And so on... Also, when to stop building the tree

Learning

The learning for Decision Trees boils down to how to build the tree. Which feature to split on first? Second? And so on... Also, when to stop building the tree

Intuition behind building Decision Trees

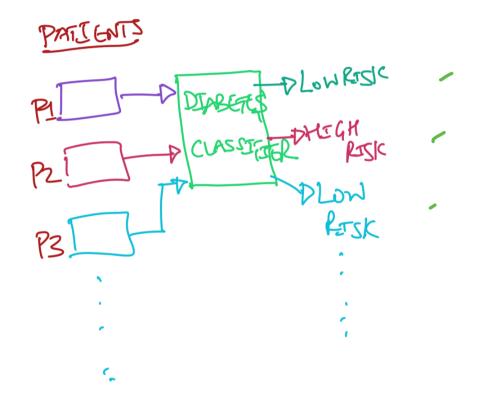
Start splitting on features that give the maximum information gain or reduce the uncertainty in prediction/reduce the classification error. This is done iteratively and hence can be thought of as a greedy procedure.

Case Study: What factors increase risk of chronic diabetes

Case Study: What factors increase risk of chronic diabetes

ſ	_	- 1	Tea	2473		hinto	<u>ה</u>	,	AR-LET
Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome	18.1
6	148	72	35	0	33.6	0.627	50	1	-> Hish Finli -> Low Fisk
1	85	66	29	0	26.6	0.351	31	0	-> low fisk
8	183	64	0	0	23.3	0.672	32	1	-
1	89	66	23	94	28.1	0.167	21	0	
0	137	40	35	168	43.1	2.288	33	1	
5	116	74	0	0	25.6	0.201	30	0	
3	78	50	32	88	31	0.248	26	1	
10	115	0	0	0	35.3	0.134	29	0	
2	197	70	45	543	30.5	0.158	53	1	
8	125	96	0	0	0	0.232	54	1	
4	110	92	0	0	37.6	0.191	30	0	
10	168	74	0	0	38	0.537	34	1	
10	139	80	0	0	27.1	1.441	57	0	

Intelligent Diabetes Risk Detection

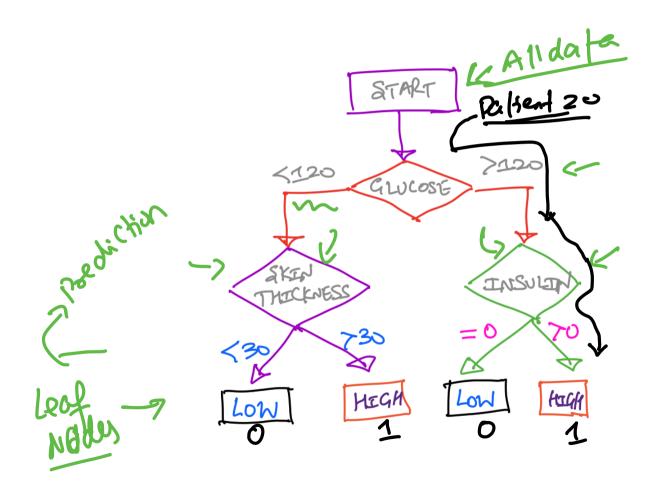


Sample Data

- R-22 Body Man Inden Tricen fold win

Glucose	Insulin	BMI	SkinThickness	Outcome
148	0	33.6	35	1
85	0	26.6	29	0
183	0	23.3	0	1
89	94	28.1	23	0
137	168	43.1	35	1
116	0	25.6	0	0
78	88	31	32	1
115	0	35.3	0	0
197	543	30.5	45	1
125	0	0	0	1
110	0	37.6	0	0
168	0	38	0	1
139	0	27.1	0	0

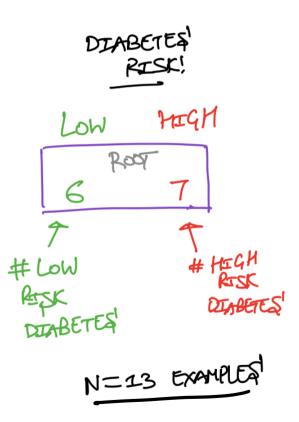
Decision Trees



Questions

- Which features are "good"?
- When to stop growing a tree?

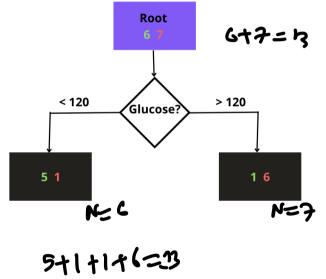
Visual Notation



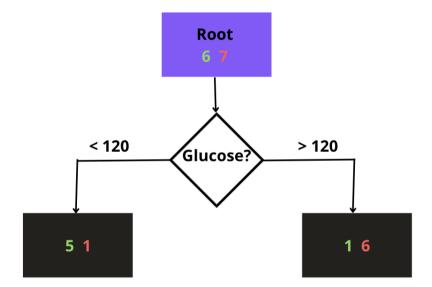
Decision stump 1

N=13

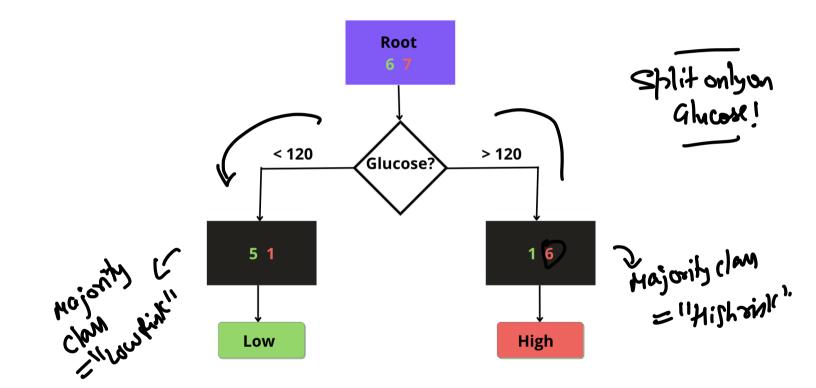
Glucose	Insulin	BMI	SkinThickness	Outcome
148	0	33.6	35	1
85	0	26.6	29	0
183	0	23.3	0	1
89	94	28.1	23	0
137	168	43.1	35	1
116	0	25.6	0	0
78	88	31	32	1
115	0	35.3	0	0
197	543	30.5	45	1
125	0	0	0	1
110	0	37.6	0	0
168	0	38	0	1
139	0	27.1	0	0



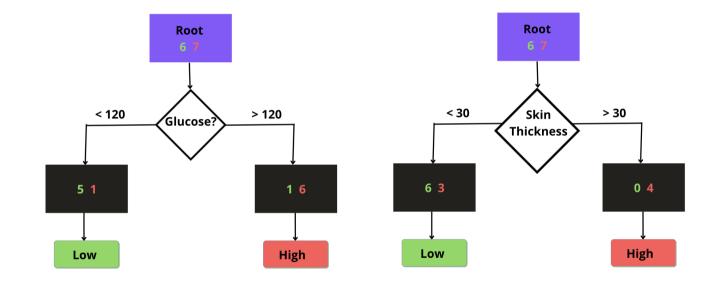
Making predictions



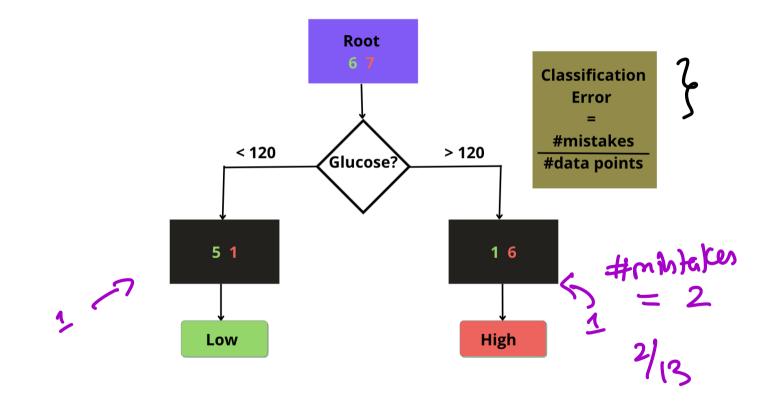
Making predictions



Split selection

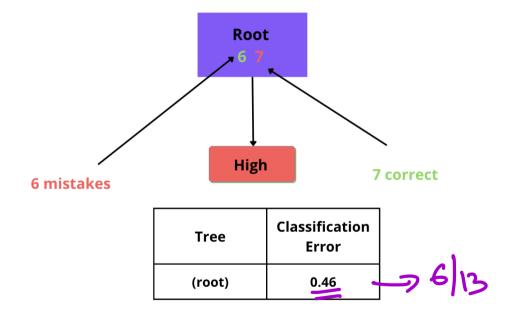


Split Effectiveness

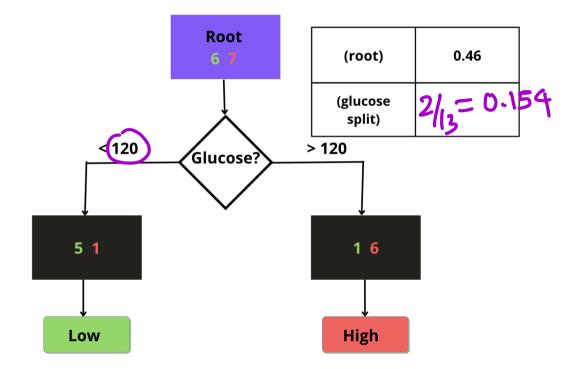


23 / 51

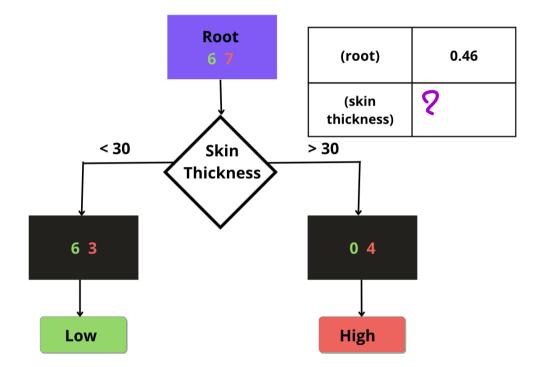
Calculate Classification Error



Split on Glucose

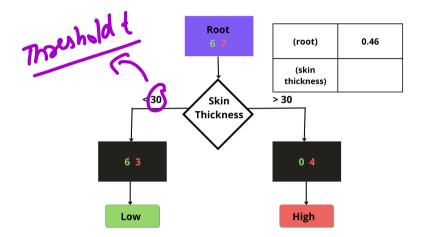


Split on Skin Thickness (ICE #1)



26 / 51

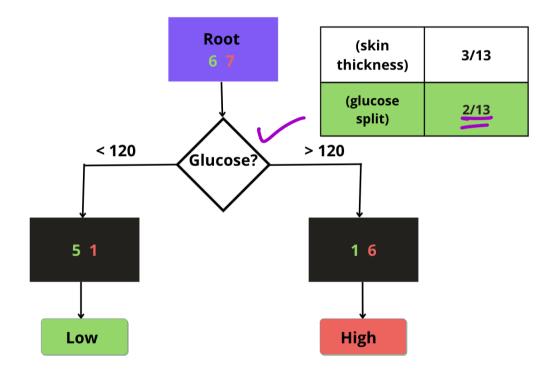
Split on Skin Thickness (ICE #1)



Whats the misclassification error of splitting on skin thickness?

- 0.07
- 0.154
- **o** 0.23
- 0.31

Split Winner



Split Thickness

Relationship of Skin Thickness to Duration of Diabetes, Glycemic Control, and Diabetic Complications in Male IDDM Patients Andrew Collier, MRCP Alan W. Patrick, MRCP Derek Bell, MRCP David M. Matthews, MRCP Cecilia C.A. MacIntyre, MSc David J. Ewing, FRCP Basil F. Clarke, FRCP

Skin thickness is primarily determined by collagen content and is increased in insulin-dependent diabetes mellitus (IDDM). We measured skin thickness in 66 IDDM patients aged 24-38 yr and investigated whether it correlated with long-term glycemic control and the presence of certain diabetic complications. With univariate analysis, skin thickness was increased and significantly related to duration of diabetes (P < .001), previous glycemic control (P < .001), retinopathy (P < .001), cheiroarthropathy (P < .001), and vibrationperception threshold ($\dot{P} < .05$). There was a negative correlation between forced expiratory volume at 1 s (P < .05) and vital capacity (P < .05) with duration of diabetes. Neither skin thickness nor ankle arteriomedial wall calcification correlated with abnormal autonomic function tests. When corrected for duration of diabetes. there was a weak correlation between skin thickness and glycemic control (P < .05) but no correlation with

tinely used as indices of glycemic control (3-5). Collagen is the most studied protein regarding advanced NEG, because of the ease with which it can be examined in skin biopsies, and because of its importance as a protein that is present in several tissues subject to complications in diabetes, e.g., vascular basement membrane, arterial wall, and lung (6-10).

Skin thickness (epidermal surface to dermal fat interface), which is primarily determined by collagen content, is greater in insulin-dependent diabetes mellitus (IDDM) patients who have been diabetic for >10 yr (11,12). This possibly reflects increased collagen crosslinkage and reduced collagen turnover (2,3).

The aims of this study were to investigate whether the increase in skin thickness related to long-term glycemic control and correlated with microangiopathic compli-

4/12-5-309.pdf by gues

BMI

	South Med J. Author manuscript; available in PMC 2016 Jan 1.	PMCID: PMC4457375	OTHER FORMATS
	Published in final edited form as:	NIHMSID: NIHMS691426	
	<u>South Med J. 2015 Jan; 108(1): 29–36.</u>	PMID: <u>25580754</u>	<u>PubReader</u> <u>PDF (438K)</u>
	doi: <u>10.14423/SMJ.000000000000214</u>		ACTIONS
Author Manuscript	The Relationship between BMI and Onset of Diabetes Mellitus and i	its Complications	66 Cite
anuscrip	Natallia Gray, Ph.D., ¹ Gabriel Picone, Ph.D., Frank Sloan, Ph.D., and Arseniy Yashkin, Ph.	.D.	☆ Favorites
Ĩ	Author information Copyright and License information <u>Disclaimer</u>		
			SHARE
	The publisher's final edited version of this article is available at <u>South Med J</u> See other articles in PMC that <u>cite</u> the published article.		y f 🗞
			RESOURCES
	Abstract	Go to: 🕨	Similar articles in PubMed

Objective

Author Manuscript

This study determines effects of elevated body mass index (BMI) on type 2 diabetes mellitus (DM) onset and its complications among U.S. elderly.

Design and Methods

Data came from the Medicare Current Beneficiary Survey (MCBS), 1991-2010. A Cox proportional hazard model was used to assess effects of elevated BML at the first MCBS interview on DM diagnosis (Univ. of Washington, Seattle) EEP 596: Al and Health Care || Lecture 3 Ap

Ľ			\mathcal{V}	
Glucose	Insulin	BMI	SkinThickness	Outcome
148	0	33.6	35	1
85	0	26.6	29	0
183	0	23.3	0	1
89	94	28.1	23	0
137	168	43.1	35	1
116	0	25.6	0	0
78	88	31	32	1
115	0	35.3	0	0
197	543	30.5	45	1
125	0	0	0	1
110	0	37.6	0	0
168	0	38	0	1
139	0	27.1	0	0

2	sr	in Mickne	730

SkinThickness	Outcome	XOR	
35	1	FALSE	
29	0	FALSE	
0	1	TRUE 🕈	
23	0	FALSE	
35	1	FALSE	
0	0	FALSE	
32	1	FALSE	
0	0	FALSE	
45	1	FALSE	
0	1	TRUE	
0	0	FALSE	
0	1	TRUE 🖌	
0	0	FALSE	

#mintaker= 3

Glucose	Outcome	XOR
148	1	FALSE
85	0	FALSE
183	1	FALSE
89	0	FALSE
137	1	FALSE
116	0	FALSE
78	1	TRUE
115	0	FALSE
197	1	FALSE
125	1	FALSE
110	0	FALSE
168	1	FALSE
139	0	TRUE 🖊

(Univ. of Washington, Seattle) EEP 596: Al and Health Care || Lecture 3

1

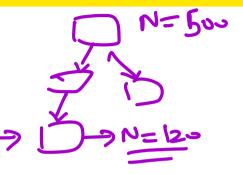
Insulin	Outcome	XOR
0	1	TRUE 🧹
0	0	FALSE
0	1	TRUE
94	0	TRUE 🧹
168	1	FALSE
0	0	FALSE
88	1	FALSE
0	0	FALSE
543	1	FALSE
0	1	TRUE 🖊
0	0	FALSE
0	1	TRUE 🧲
0	0	FALSE
		5/13

(Univ. of Washington, Seattle) EEP 596: Al and Health Care || Lecture 3

BMI	Outcome	XOR	
33.6	1	FALSE	
26.6	0	FALSE	
23.3	1	TRUE	
28.1	0	FALSE	
43.1	1	FALSE	
25.6	0	FALSE	
31	1	FALSE	
35.3	0	TRUE	
30.5	1	FALSE	
0	1	TRUE	
37.6	0	TRUE	
38	1	FALSE	
27.1	0	FALSE	
			4/17

	Glucose	SkinThickness	BMI	Insulin
Mis-	2	3	3 4	5
Classification				
Error				

Split selection



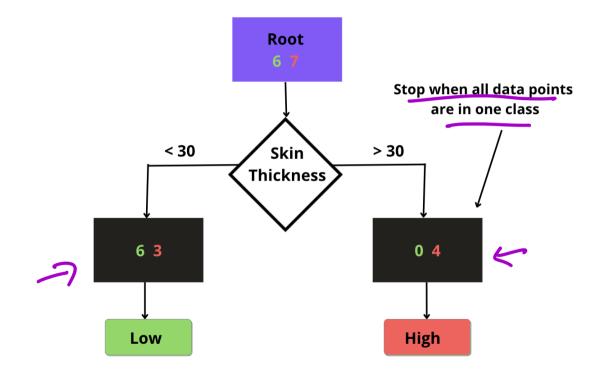
Split selection procedure

- Given a subset of data set, *M* at a node
- For each remaining feature $h_i(x)$, split M by feature $h_i(x)$ and compute classification error
- Pick the feature i to split with minimum classification error

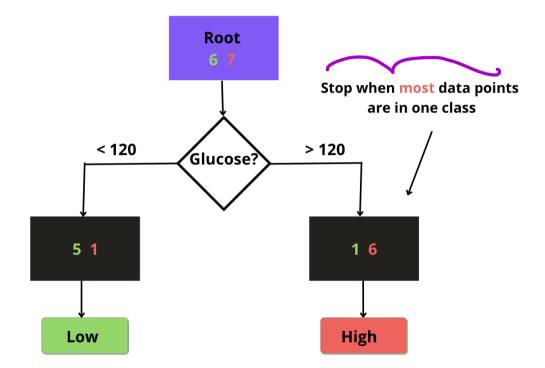
Decision Tree Classification as a Greedy Procedure

DT Classifier Training procedure If classification splits satisfy criteria (e.g. low classification error), stop, Else, split further using split selection procedure.

Stopping



Stopping



40 / 51

Stopping criteria in practice

Splits with few data points can lead to over-fitting. Example

Stopping criteria in practice

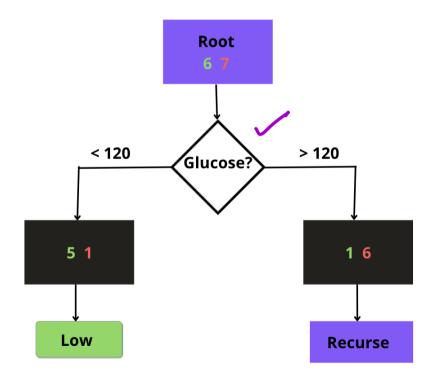
- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.

41 / 51

- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.
- Although theoretically, can aim for 0 classification error This would lead to over-fitting. Use above 2 to stop earlier.

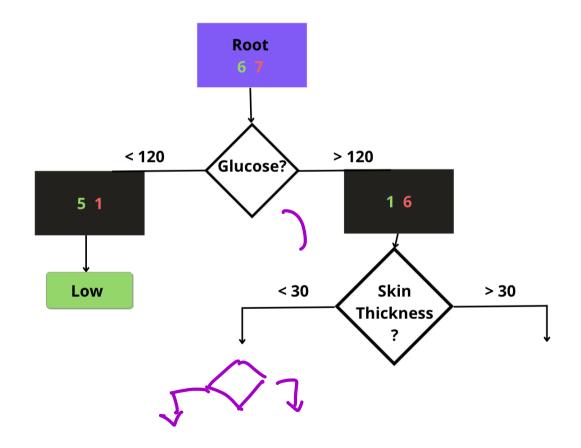
- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.
- O Although theoretically, can aim for 0 classification error This would lead to over-fitting. Use above 2 to stop earlier.
- No standard 'regularization' for DTs like for Logistic Regression.

Recursive Splits



42 / 51

Second level DT



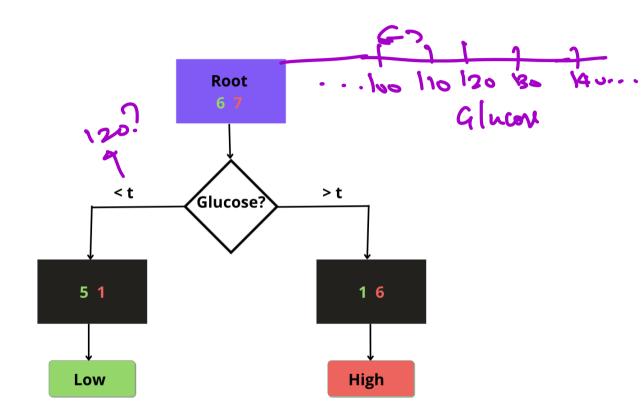
Classification error



The classification error for the DT above is:

- 0.07
- 0.154
- **o** 0.23
- 0.31

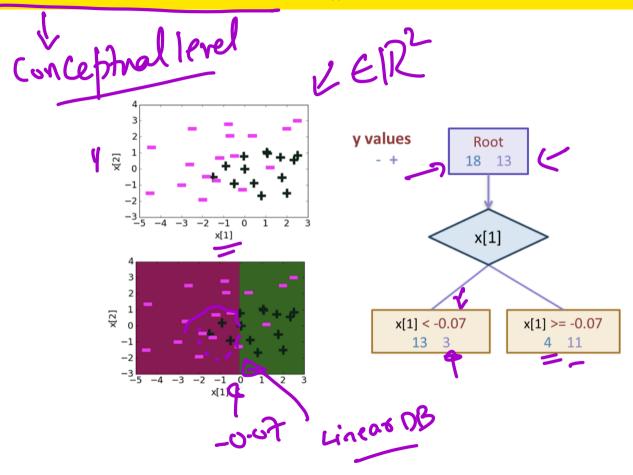
Threshold splits for real valued features



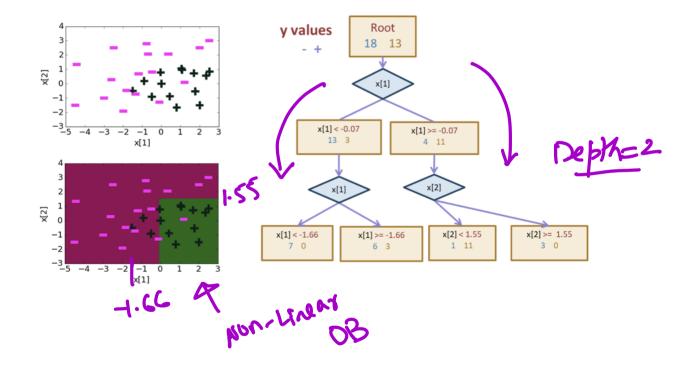
Choosing Split Threshold for Numeric Features

- 🔕 Grid search? 🧹
- Inumeric vs Categorical Features: Can recurse more than once on a numeric feature. Can't do the same for categorical feature. Why?

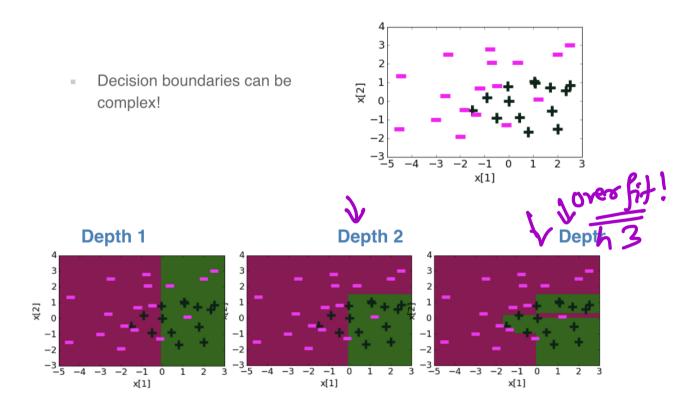
Decision Boundary level 1 || Numeric Features



Decision Boundary level 2 || Numeric Features



Decision Boundary level 3 || Numeric Features



Decision Trees Summary

Summary

- Intuitive way to classify by making decsisions by walking down the tree
- Can learn complex non-linear decision boundaries (unlike logistic regression)
- Prone to overfit as tree depth increases (unlike logistic regression)
- Splitting at nodes with few data points can lead to overfitting
- Over-fitting can be avoided by early stopping (depth or error)
- Improve Decision Trees Random Forests Next Lecture!

Both are interpretable in different ways

- Both are interpretable in different ways
- Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large

- Both are interpretable in different ways
- Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large
- Occision Trees can easily learn non-linear decision boundaries while Logistic Regression learns linear decision boundary

- Both are interpretable in different ways
- Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large
- Occision Trees can easily learn non-linear decision boundaries while Logistic Regression learns linear decision boundary
- Obcision Tree has a higher model complexity as compared to Logistic Regression

(Univ. of Washington, Seattle) EEP 59

model complexi!

EEP 596: AI and Health Care || Lecture 3

Apr 4, 2022

- Both are interpretable in different ways
- Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large
- Oecision Trees can easily learn non-linear decision boundaries while Logistic Regression learns linear decision boundary
- Decision Tree has a higher model complexity as compared to Logistic Regression
- Solution Control Co