EEP 596: AI and Health Care || Lecture 5 Dr. Karthik Mohan

Univ. of Washington, Seattle

Apr 11, 2022

• Late days: 5 late days for the whole quarter - can use it whenever. After you use up the late days - You will incur a penalty on the grade.

- Late days: 5 late days for the whole quarter can use it whenever. After you use up the late days - You will incur a penalty on the grade.
- Mini-Project 1: Will be based on wearable device and data collected and analyzed from the device. Exact description of mini-project will be released early this week.

- Late days: 5 late days for the whole quarter can use it whenever. After you use up the late days - You will incur a penalty on the grade.
- Mini-Project 1: Will be based on wearable device and data collected and analyzed from the device. Exact description of mini-project will be released early this week.
- Anything else?

• Random Forests

- Random Forests
- Wearable Devices Overview

- Random Forests
- Wearable Devices Overview
- Introduction to Anomaly and Change Point Detection

• Anomaly and Change Point Detection

• Anomaly and Change Point Detection

• Case Study: Arrhythmia Data

New Topic: Wearable Devices

Power of Wearables

Deanna Recktenwald, an 18-year-old high school senior, received a ping on her Apple Watch earlier this year that said, "Seek medical attention." Recktenwald is grateful for taking the message seriously, because emergency room procedures revealed that her kidneys were functioning at a mere 20% and needed immediate intervention. The Apple Watch, with the heart rate tracking function that alerted Recktenwald, is one of many wearable devices in the market that offer patients the ability to track their health, thereby improving their chances of better outcomes. "We are working with people with Parkinson's. Our technology can facilitate a meaningful interaction between the wearer and care teams. The wearable can offer an understanding if a new medication is working or not." – Nicholas Constant, EchoWear LLC

"Most cases of mild-to-moderately-severe hearing loss can be managed by users themselves, if all the tools work well. The hearing aid advantage will not last more than two years from now." – Alexander Goldin, Founder and CEO, Alango Technologies

"We started with sleep. The impact it has, from cognitive function the next day, fasting glucose, hormones, T-cells that fight cancer – these are all linked to our sleep." – Harpreet Singh Rai, CEO, **Ōura Ring**

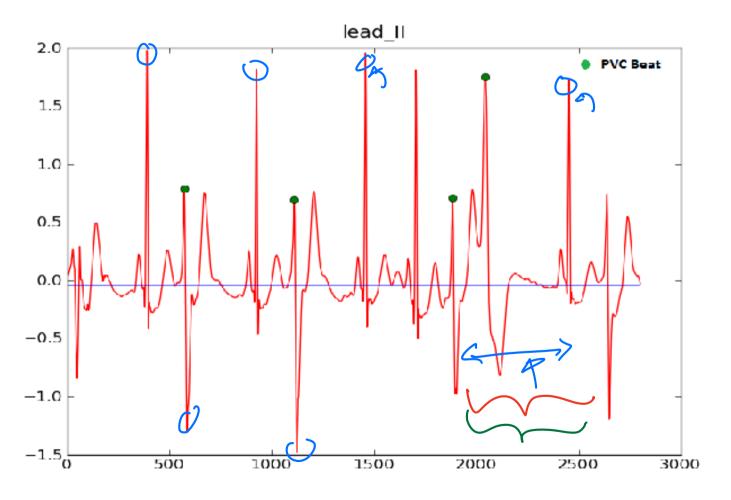
"Apple launched a revolution in the wearable industry and mainstreamed the device. The "smart" fall detection system that we built is a patented API. It can go into any wearable." – Shea Gregg, CEO, FallCall Solutions

Case Study: Wearable Devices

Category	What it is	Examples	
Hearables/earbuds	An amplification ear-worn	Apple AirPods,	
	wearable	WearandHear, Dime	
Smartwatches	Smart watches monitoring	Apple, Samsung, Fitbit,	
	activity, health metrics	<u>Garmin, Adapt</u>	
Headsets – AR/VR	Internet-connected glasses MyndVR, Embodied		
	enable alternate views	<u>Rendever</u>	
Fitness trackers (no	Step counter, heart rate	<u>Amazon Halo, Vivo,</u>	
watch)		Whoop Strap 3, Fitbit One	
Continuous diabetes	Scans detect blood sugar	FreeStyle Libre, Dexcom	
wearables	level, patch injects insulin	<u>G5,</u>	
Sleep trackers	Wearables noted for sleep <u>Oura Ring</u> , Whoop		
	tracking	<u>Versa</u>	
Wrist-worn Health	Low-sleep indicates risk of	Omron HeartGuide,	
	<u>dementia</u>	Amazon Halo, Whoop	
Smart jewelry	Ring, Necklace	Trelaware, ADT invisiWear	
Dementia zone trackers	Set a range – track	MindMe Locate,	
	movement outside range	PocketFinder	
Medical Grade wearable,	Blood pressure, mobile	Omron HeartGuide,	
data collection	EKG, Diabetes patch	AliveCor, Tidepool	
Medical	Emergency call, fall	Medical Guardian, Lively	
Alert/PERS/Safety	detection – in home or out	Wearable, UnaliWear	

Figure 8 Examples of wearable categories and some of the offerings

Anomaly Detection: Arrythmia



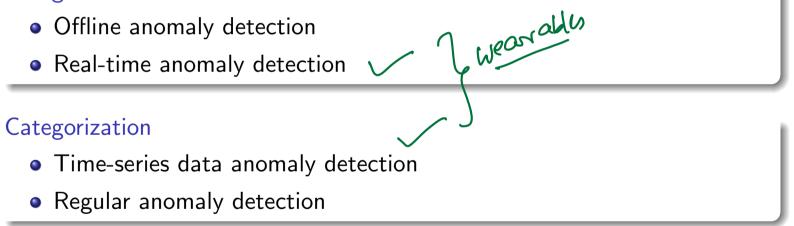
Broad list of methods

Categorization

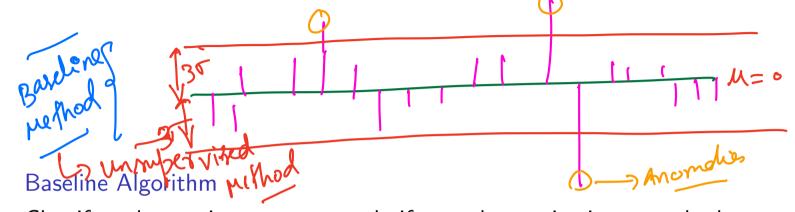
- Offline anomaly detection
 Real-time anomaly detection

Broad list of methods

Categorization



tion



Classify a data point as an anomaly if your data point is α standard deviations (σ) away from the mean. Here α is typically greater than 3.

This on anomaly?
 This on anomaly?
 X > M + 3V or X < M − 30.
 No
 X > M + 3V or X < M − 30.
 No
 Yes transly!
 No
 No
 Yes transly!
 Anomaly!
 Anomaly
 Anomaly

(Univ. of Washington, Seattle) EEP 596: AI and Health Care || Lecture 5 NV.

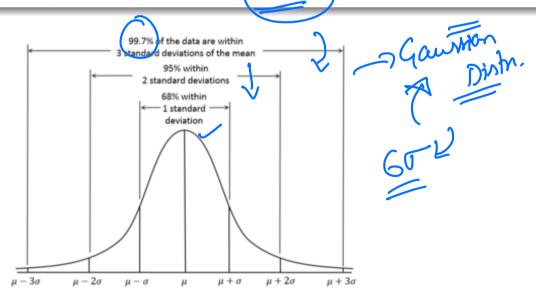
Temperature Example

The mean human body temperature is 98.4 F. Assume now that the thermometer is accurate but normal body temperature fluctuations are expected to be within 0.5 degrees F, then there is cause for concern if temperature deviates beyond 98.4 ± 1.5 for $\alpha = 3$.

V=0.5 d= 3 μ= 98.9 98.4+35 = 984+1.5-99.4

Temperature Example

The mean human body temperature is 98.4 F. Assume now that the thermometer is accurate but normal body temperature fluctuations are expected to be within 0.5 degrees F, then there is cause for concern if temperature deviates beyond 98.4 ± 1.5 for $\alpha = 3$.





Faulty thermometer

Assume you only have a faulty thermometer to measure your body temperature. Sometimes its accurate and sometimes it is not. You get to know that its reading can fluctate up to 3 degrees over or below the true temperature. You measure your temperature and its 102 degrees F. Should you head to the urgent care?

Faulty thermometer

Assume you only have a faulty thermometer to measure your body temperature. Sometimes its accurate and sometimes it is not. You get to know that its reading can fluctate up to 3 degrees over or below the true temperature. You measure your temperature and its 102 degrees F. Should you head to the urgent care?

False positives vs False Negatives

Anomaly Detection methods get caught between controlling false positives and not missing True positives (i.e. having false negatives). Would you rather flag a social media post as inappropriate and capture 95% of

Becimm Recall

Anomaly Detection for Wearables Framework

sensors

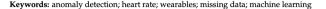
Review

Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Algorithms and Prospects

Jithin S. Sunny ^{1,†}⁽⁰⁾, C. Pawan K. Patro ^{2,*,†}⁽⁰⁾, Khushi Karnani ¹, Sandeep C. Pingle ², Feng Lin ², Misa Anekoji ², Lawrence D. Jones ², Santosh Kesari ^{3,4}⁽⁰⁾ and Shashaanka Ashili ²⁽⁰⁾

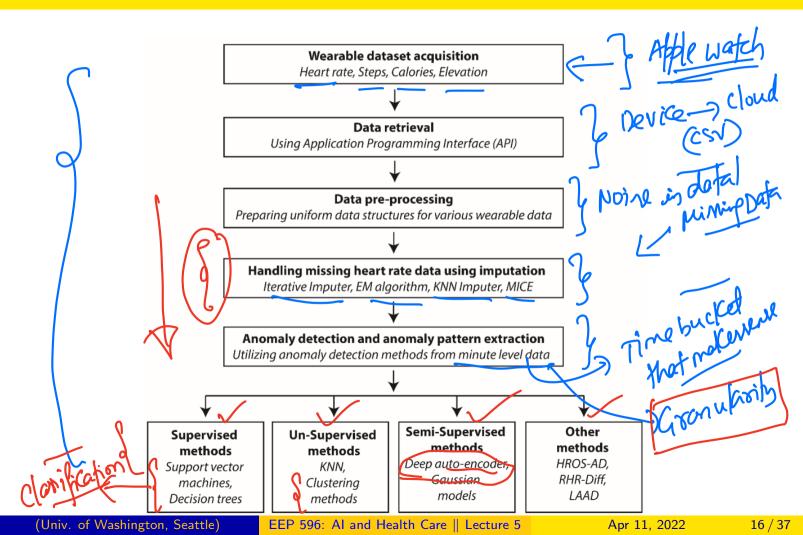
- ¹ Rhenix Lifesciences, Hyderabad 500038, India; jithin@rhenix.org (J.S.S.); khushi@rhenix.org (K.K.)
- ² CureScience, San Diego, CA 92121, USA; spingle@curescience.org (S.C.P.); flin@curescience.org (F.L.); manekoji@curescience.org (M.A.); ljones@curescience.org (L.D.J.); shashi@curescience.org (S.A.)
- ³ Pacific Neuroscience Institute, Providence Saint John's Health Center, Santa Monica, CA 90404, USA; santoshkesari@gmail.com
- ⁴ Department of Translational Neurosciences, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
- * Correspondence: info@curescience.org
- + These authors contributed equally to this work.

Abstract: Wearable devices use sensors to evaluate physiological parameters, such as the heart rate, pulse rate, number of steps taken, body fat and diet. The continuous monitoring of physiological parameters offers a potential solution to assess personal healthcare. Identifying outliers or anomalies in heart rates and other features can help identify patterns that can play a significant role in understanding the underlying cause of disease states. Since anomalies are present within the vast amount of data generated by wearable device sensors, identifying anomalies requires accurate automated techniques. Given the clinical significance of anomalies and their impact on diagnosis and treatment, a wide range of detection methods have been proposed to detect anomalies. Much of what is reported herein is based on previously published literature. Clinical studies employing wearable devices are also increasing. In this article, we review the nature of the wearable-associated data and the downstream processing methods for detecting anomalies. In addition, we also review supervised and un-annotated healthcare data.



Citation: Sunny, J.S.; Patro, C.P.K.; Karnani, K.; Pingle, S.C.; Lin, F.; Anekoji, M.; Jones, L.D.; Kesari, S.; Ashili, S. Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis Theorithms and Prospects. Sense's 2022, 2, 756. https://doi.org/10.300/s22030756

Anomaly Detection for Wearables Framework



Imputation Methods for wearable analytics

Methods	Definition	Accuracy	References
Mean value imputation (MVI)	The values are filled using calculating the mean for a missing value	Biased	[42]
Maximum Likelihood (ML)	A likelihood function is evaluated and then sum or integrate over the missing data estimation		[43]
Hot Deck Imputation	A data matrix for all instances created is chosen as a source for missing values cause bias		[44]
Multiple Imputation (MI)	Starts by introducing random variation and generates several datasets with slightly different imputed values. Statistical analysis on each to find the optimal one	Comparable to ML	[45]
Multivariate Imputation by Chained Equations (MICE)	The method first identifies an imputation model for each column followed by random draws from the observable data	olumn followed by random Comparable to ML	
Expectation–Maximization with Bootstrapping (EMB)	Initially the likelihood function is evaluated using model parameters. Next, with the updated parameters, the likelihood function is maximized, and the parameters are updated to return a new distribution	Comparable to ML	[47]

Mean Imputation

Replace missing value at a (row,col) index in a data table by the mean of the column values that the index belongs to.

Median Imputation

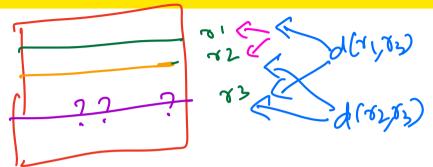
Consider the following data table

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> 6
1	2	3	1	4	5
1	5	5	4	2	3
1	2	5	3	1	2
2	3		4	3	

What would median imputation output for the missing values in row 4?

- **b** 53
- 5 5
- **0** 3 3

Imputation Methods: Hot Deck Imputation

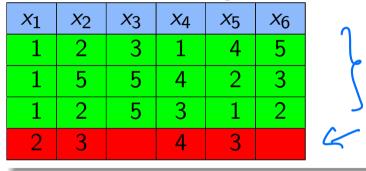


Hot Deck Imputation

For any given row that needs imputation, find a **donor** row that can help with imputation. Donor rows can be chosen based on the nearest distance to the row that needs imputation. The nearest distance is computed on the values that are available in both the donor row and the row needing imputation.

Hot Deck Imputation

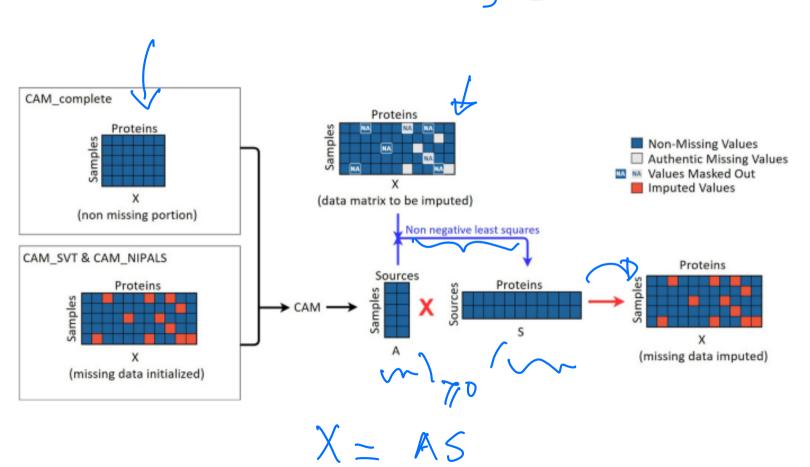
Consider the following data table



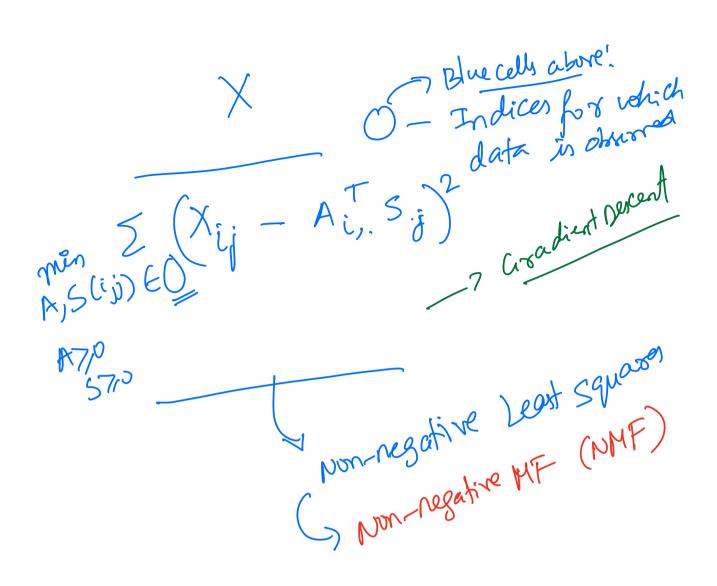
Find the donor row index for the row with missing values based on ℓ_1 [18,-82]]1 = 5, 18,1-82i distance.

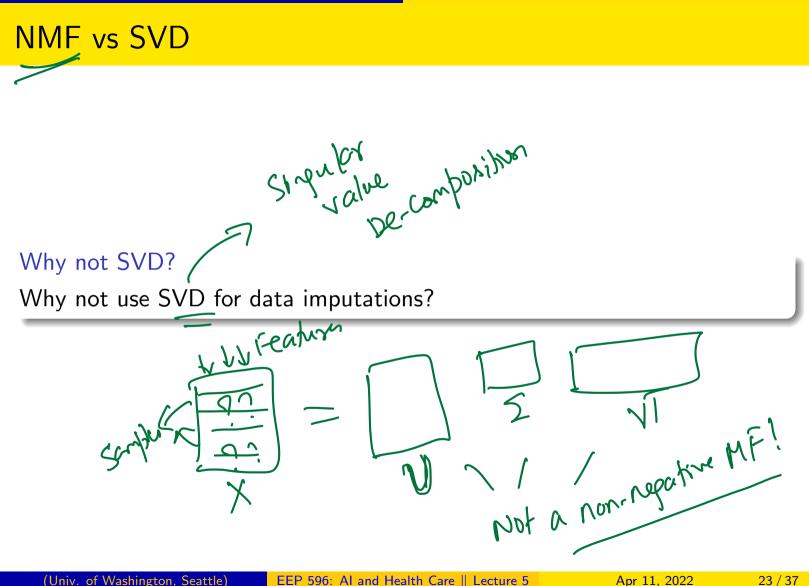
- Row 1
- Row 2 b
- Row 3
- None of the above d

Non-negative Matrix Factorization

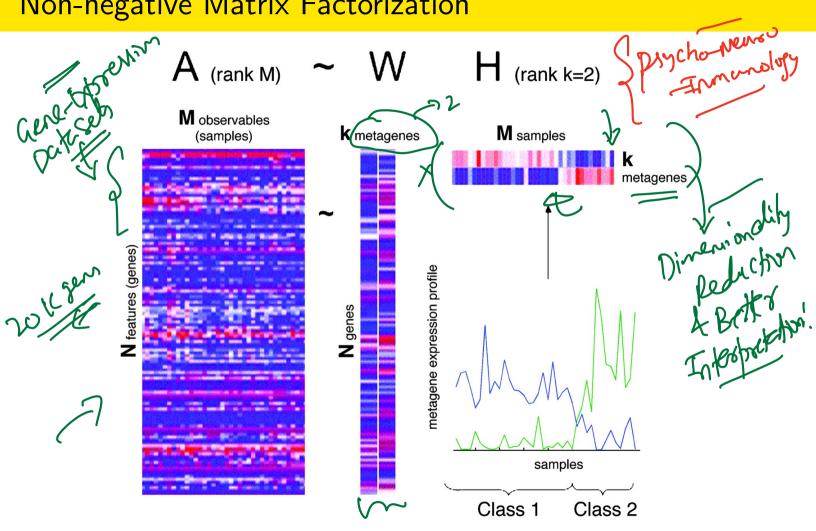


multiplimpu





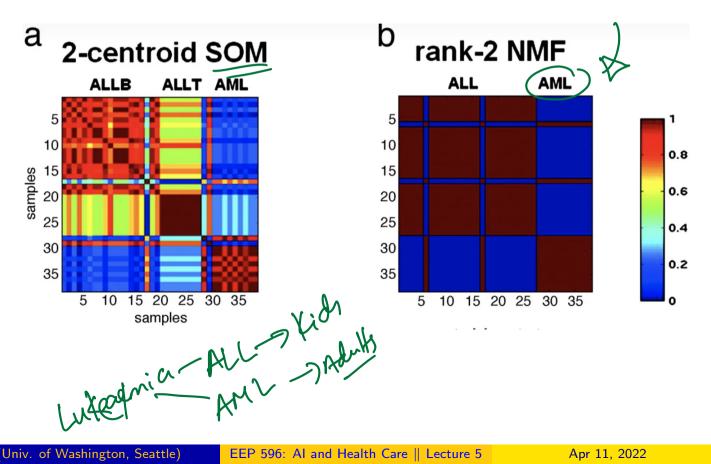
Non-negative Matrix Factorization



EEP 596: AI and Health Care || Lecture 5

24 / 37

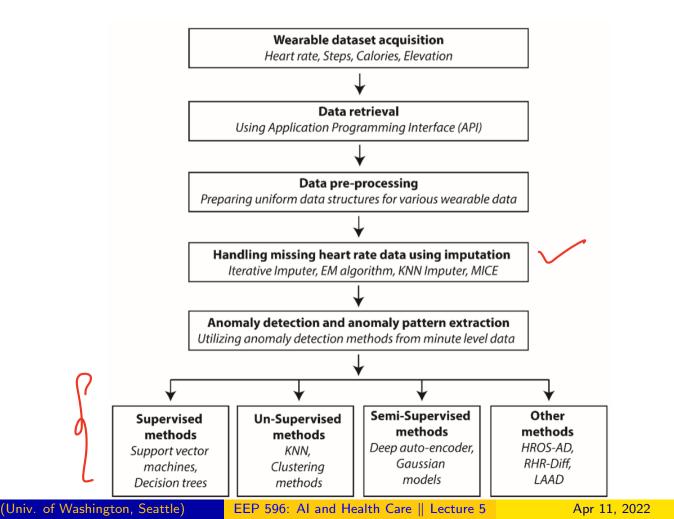
Non-negative Matrix Factorization



(Univ. of Washington, Seattle)

25 / 37

Anomaly Detection for Wearables Framework

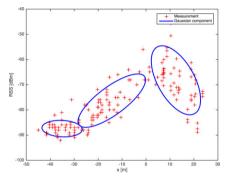


Anomaly Detection: Types of Anomalies

• Point Anomaly: Deviation from a set of data points where M is the formula of the set of data points where M is the set of data points where M is the set of data points where M is the set of data point. The set of data points where M is the set of data point M is the set of data point. The set of data points where M is the set of data point M is the set of data point. The set of data points where M is the set of data point M is the set of data point. The set of data points where M is the set of data point M is the set of data point. The set of data points where M is the set of data point M is the set of data point. The set of data point M is the set of data point M is the set of data point. The set of data point M is the set of data point M is the set of data point M is the set of data point. The set of data point M is the set of da

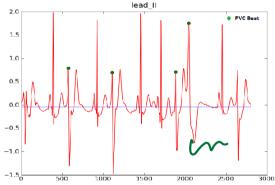
Anomaly Detection: Types of Anomalies

Operation of the set of the set



Contextual Anomaly: Depending on the context, a data point could be an anomaly or not. For instance 35 degrees is not an anomalous temperature for Seattle winter but it is for Seattle summer. Same is true for anomalies in a time-series data e.g. if a person has an average o2 level of 90. Both 100 and 80 look like anomalies, but only lower o2 is a cause for concert (Directional anomalies).

Solution of them become anomalous. E.g. the Arrhythmia time series.



ICE #3

Anomaly Type

You are tasked with detecting if spo2 is trending downwards. So far its been trending downwards. You need to identify the trend by end of day. This is an example of:

- Point anomaly detection
- Contextual anomaly detection
- Collective anomaly detection
- Not an anomaly detection problem

Anomaly Type

You are tasked with identify which genes are the mutant ones in gene-expression data of patients that are both healthy and have cancer. Identifying these mutant genes is an example of:

- Point anomaly detection
- Contextual anomaly detection
- Collective anomaly detection
- Not an anomaly detection problem

Local window anomalies

Fit a linear model that captures local trends and compute a probability for a new data point being an anomaly w.r.t local model.

Un-supervised Learning

If we don't have enough labels for anomalies (or positive class), we have no choice but to resort to **un-supervised learning**.

Un-supervised Learning

If we don't have enough labels for anomalies (or positive class), we have no choice but to resort to **un-supervised learning**.

Un-supervised Learning

However, un-supervised learning for anomaly detection is fraught with issues. What are they?

Becinion Recall Do many FP!

Semi-supervised Learning Learn good features from un-supervised learning and use a simple classifier - such as logistic regression model to fine tune the probability computations! **Example features:** Deviation from a local linear regression model fit on a local window. Deviation from median of a local window.

Time-series Anomaly Detection

ICE #5

What are the hyper-parameters for the semi-supervised logistic regression based anomaly detection approach we just described?

- The weights for the different features learned from un-supervised learning that are then combined to get a probability prediction from logistic regression
- The number of (unsupervised learning) features used in the logistic regression
- The size of the local window used to compute these features
- The probability of a data point being an anomaly

Deep Learning for Anomaly Detection

Next Lecture

Deep Learning based methods for EEG analysis, Arrythmia and detection of other conditions.

 Pick a wearable from the market that does tracking of HR, glucose or BP. Ensure you can get end of day csv files or equivalent data from wearable

- Pick a wearable from the market that does tracking of HR, glucose or BP. Ensure you can get end of day csv files or equivalent data from wearable
- Do change point detection and anomaly detection on your own data

- Pick a wearable from the market that does tracking of HR, glucose or BP. Ensure you can get end of day csv files or equivalent data from wearable
- Do change point detection and anomaly detection on your own data
- Some frequency domain analysis as well and record your insights

- Pick a wearable from the market that does tracking of HR, glucose or BP. Ensure you can get end of day csv files or equivalent data from wearable
- Do change point detection and anomaly detection on your own data
- Some frequency domain analysis as well and record your insights
- Present in teams of 2 maybe end of April. How does that sound?

(Univ. of Washington, Seattle)

EEP 596: AI and Health Care || Lecture 5

- Anomaly Detection Framework for Wearables Data: A Perspective Review on Data Concepts, Data Analysis, Algorithms and Prospects
- Pealthcare and Anomaly Detection: Using Machine Learning to predict Anomalies in Heart Rate Data
- 8 Review of Hot Deck Imputation