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Logistics

Next assignment on Arrhythmia Detection

How were Assignments 1 and 2 and Kaggle format?

Anything else?
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Last Lecture

Wearables and Data Access

Sleep and Relaxation self case-study

Introduction to Deep Learning
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Today

Deep Learning Recap and Focus

Deep Learning Methods for Anomaly Detection

Deep Learning for other health care problems
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Anomaly Detection in IoT context

Properties of a good Anomaly Detector for IoT data streams

1 Speed: Ability to handle data coming in rapidly. In the case of heart
rate monitoring and Arrhythmia Detection, data coming in every 5
seconds (e.g. Cardiogram App for Apple Watch).

2 Memory: Ability to handle massive amounts of data with limited
memory. One data point a second is 86400 data points a day. With
multiple sources of data, this can go to a million data points a day -
However, anomaly detectors may only be able to use a small window
size around the current timestamp to analyze and detect anomalies.

3 High dimensionality: Heart rate is single dimension. Combine this
with other sensors, and many more dimensions emerge and make the
data stream more complex. Health care applications might be good
on this.

4 Data Drift: Ability to handle changing data streams, changing
baselines in HR or O2, understanding contexts.
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Taxanomy of Anomaly Detection Landscape
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Anomaly Detection Methods
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DL Methods
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Feed Forward Neural Based Anomaly Detection
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Comparison of Methods on di↵erent dimensions
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Deep Learning Recap and Architectures for Anomaly
Detection
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More DL Architectures

Neural Networks Zoo

Zoo Reference
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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2 Layer Neural Network
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Perceptron to Logistic Regression
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Choices for Non-Linear Activation Function
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RELU vs Leaky RELU
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Computer vision before deep learning
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Computer vision after deep learning

(Univ. of Washington, Seattle) EEP 596: AI and Health Care k Lecture 7 Apr 18, 2022 20 / 69



Feed-forward Deep Learning Architecture Example
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Good vs Bad Local minima
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Hyper-parameters in Deep Learning

ICE #1: Which of the following is not a hyper-parameter in deep learning?

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 None of the above
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods

(Univ. of Washington, Seattle) EEP 596: AI and Health Care k Lecture 7 Apr 18, 2022 28 / 69



ICE #2

Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has
1000 neurons. Let the input layer be raw pixels from a 100x100 image and
the output layer has 10 dimensions, let’s say for a 10 class image
classification example. How many total parameters exist in the DNN
model?

1 10 million parameters

2 11 million parameters

3 12 million parameters

4 13 million parameters
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Over-fitting in DNNs

How to handle over-fitting in DNNs

1 A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

2 Weight regularization can help - `1, `2
3 More common over-fitting strategy for DL?

4 Dropouts!

5 Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How’s this di↵erent from
regular validation we were doing earlier??

6 Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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ICE #3

ML Models

Which of the following ML models can possibly learn the XOR function
with enough training data:

1 Logistic Regression

2 Decision Trees

3 SVM

4 Multi-Layer Perceptron
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Forward Propagation vs Back-propagation
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Back Propagation explained
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More DL Architectures

Neural Networks Zoo

Zoo Reference
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More DL Architectures

Neural Networks Zoo
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Auto Encoders

(Univ. of Washington, Seattle) EEP 596: AI and Health Care k Lecture 7 Apr 18, 2022 36 / 69



ICE #5

PCA vs Auto Encoder

Which of the following statements are true ?

1 Both PCA and Auto Encoders serve the purpose of dimensionality
reduction

2 They are both linear models but one uses a neural nets architecture
and the other is based on projections

3 PCA is robust to outliers while Auto Encoders are not

4 Auto Encoders are as better than Glove Embeddings to find low-dim
embeddings for words

(Univ. of Washington, Seattle) EEP 596: AI and Health Care k Lecture 7 Apr 18, 2022 37 / 69



PCA vs Auto-Encoders
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AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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AutoEncders Summary

1 Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

2 Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

3 Anything else?

4 Auto Encoders can learn convolutional layers instead of dense layers -
Better for images! More flexibility!!
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Removing obstacles in images
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Removing obstacles in images
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Coloring Images
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De-noising Auto Encoders
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De-noising Auto Encoders
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De-noising Auto Encoders
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De-noising Auto Encoders

Details

Just like an Auto Encoder

Di↵erence: Noise is injected in the inputs on purpose but output is a
clean data point.

This forces the Auto Encoder to “de-noise” data, esp. useful for
images!

Esp. useful for a category of objects or images (e.g. digit recognition
or face recognition, etc)
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ICE #6

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

1 Perceptron

2 Auto Encoder

3 De-noising Auto Encoder

4 K-means++

5 None of the above

6 All of the above
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Variational Auto Encoders
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Variational Auto Encoders
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Variational Auto Encoders
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Variational Auto Encoders
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Variational Auto Encoders
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Breakouts Time #1

Usefulness of AEs

Discuss in your groups how any of the Auto Encoders can be helpful for
anomaly detection in health care metrics (e.g heart rate) - E.g.
Arrhythmia detection.
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More DL Architectures

Neural Networks Zoo

Zoo Reference
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Sequence to Sequence Model (LSTM) Applications
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Sequence to Sequence Model (LSTM) Applications
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Breakouts Time #2

Usefulness of LSTMs

Brainstorms the problems in health care that could benefit from the use of
an LSTM model.
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Time-series Anomaly Detector for KPIs

Framework for Anomaly Detection using Deep Learning

Applies wherever there is a KPI (Key Performance Indicator) as a
time-series.. esp with cloud applications. This holds true for Health
care data on the cloud - HR, pulse, gluocse, etc.

Uses VAE for over-sampling - I.e. Data Augmentation on the
minority class (E.g. anomalies)

Can try this for Assignment 3 on Arrhythmia Detection to
over-sample the anomalies using VAE

Uses CNN + LSTM architecture to capture spatio-temporal and
sequential features.

Beats baselines by a good margin.

Reference: KPI-TSAD: A Time-Series Anomaly Detector for KPI
Monitoring in Cloud Applications
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Time-series Anomaly Detector for KPIs

Reference: KPI-TSAD: A Time-Series Anomaly Detector for KPI
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Anomaly Detection Recipe using DL for KPIs (Time-series
Anomaly Detector for KPIs)
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VAE architecture (Time-series Anomaly Detector for KPIs)
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Over-sampling/Data Augmentation! (Time-series Anomaly
Detector for KPIs)
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Overall Architecture for Anomaly Detection (Time-series
Anomaly Detector for KPIs)
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Summary

1 Recap on DL and DL architectures

2 Usefulness in Healthcare

3 Frameworks for Anomaly Detection

4 Data augmentation through VAE esp for the minority class
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