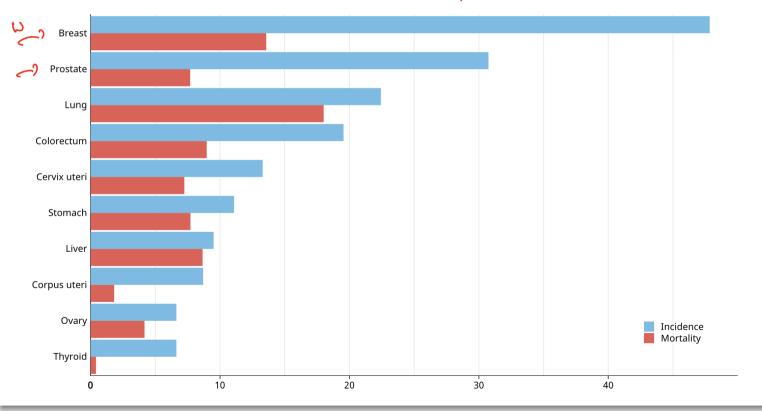
EEP 596: AI and Health Care || Lecture 9 Dr. Karthik Mohan

Univ. of Washington, Seattle

Apr 29, 2022

• Mini Project 1 first deadline - Sunday, May 1

- Mini Project 1 first deadline Sunday, May 1
- Mini Project 1 second deadline Monday, May 2
 Folder, May 6

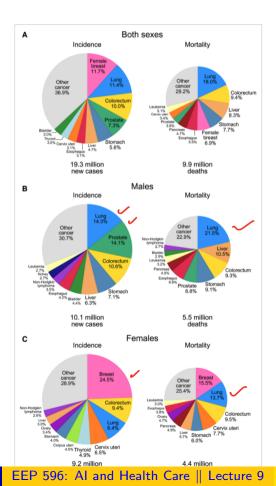

Carl

- Cancer Study
- 2 Cancer Diagnosis
- I Methods for Cancer Diagnosis

US Cancer Statistics

World wide stats 2021

Estimated age-standardized incidence and mortality rates (World) in 2020, worldwide, both sexes, all ages

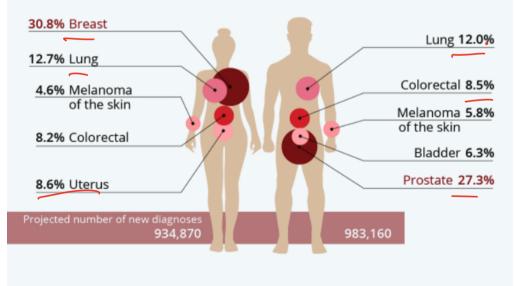


(Univ. of Washington, Seattle)

EEP 596: Al and Health Care || Lecture 9

Apr 29, 2022

World wide stats 2020



(Univ. of Washington, Seattle)

By Gender 2022

The Most Common Types of Cancer in the <u>U.S</u>.

Projected share of new cancer diagnoses in the U.S. in 2022, by gender

Source: American Cancer Society

7 / 28

A COC

50 % of Lymphoma cancer (Lymphatic cancer) is detected at Stage 3 or 4!

- 50 % of Lymphoma cancer (Lymphatic cancer) is detected at Stage 3 or 4!
- 2 Early screening of patients with risk can lead to effective treatment

- 50 % of Lymphoma cancer (Lymphatic cancer) is detected at Stage 3 or 4!
- ② Early screening of patients with risk can lead to effective treatment
- In ML can help with risk assessment based on EHR, medical imaging data, test, etc

(Univ. of Washington, Seattle)

EEP 596: AI and Health Care || Lecture 9

Even in Breast Cancer, its not clear how to suggest patients for breast cancer screening

- Even in Breast Cancer, its not clear how to suggest patients for breast cancer screening
- ML models can help with this

- Even in Breast Cancer, its not clear how to suggest patients for breast cancer screening
- ML models can help with this
- Screening ML models within Hospital workflows can automatically trigger a referral or diagnostics test Hence speeding up treatment and recovery
 Time, menu, with Ghim, modified in the model.

(Univ. of Washington, Seattle) EEP 596: AI and Health Care || Lecture 9

ML in cancer detection

Brainstorm how ML can support different parts of the early cancer detection pipeline for a typical patient at a hospital. What would be the data sources be used to train the ML model, and where in the pipeline would ML/AI help with speed ups in detection time - Think of a practical setting at a hospital you know of.

Data Sources


Multi-modal: Images, patient characteristics, etc
 EHR given patient features and patient history
 Radiology reports give medical imaging data
 Digitized pathology slides (tissue samples imaged)
 Blod chemishy Profiles - Histopathology Report

Papert (Dun't Know Rinki Papert (deulfrmidel) Which parts of ML/AI can help with extracting information from EHR?

- CNNs
- Output NLP approaches
- ISTMs
- 4 Auto Encoders

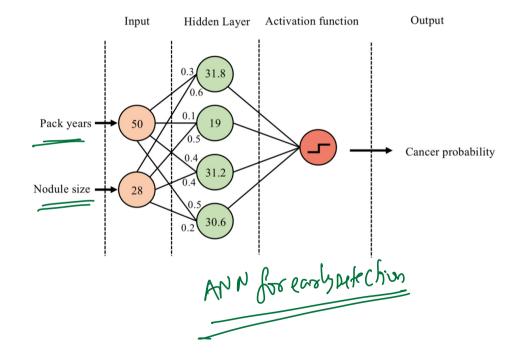
Digitized pathology slides

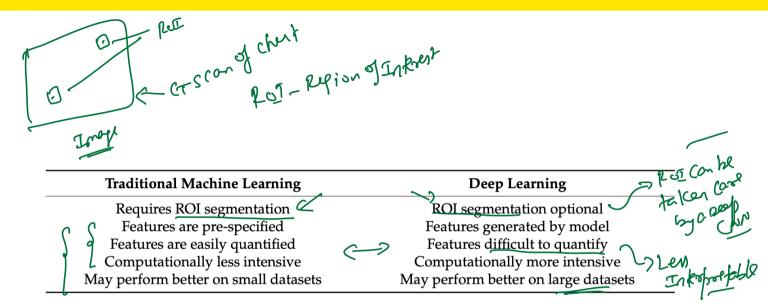
ML Approaches

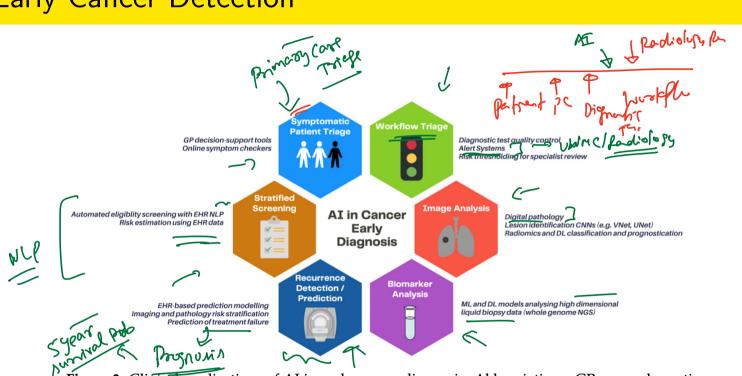
ML Approaches

- ML for Radiology: Radiomics
- 2 Traditional ML

15 / 28


- ML for Radiology: Radiomics
- 2 Traditional ML
- Output Deep Learning esp. for Imaging has seen 95% AUC for Breast cancer, Brain cancer, Lung cancer detection in literature


Table 1. Common supervised ML techniques with early diagnosis examples.


	Model	Туре	Description	Example
ړ		R	Uses logistic function to predict categorical outcomes	Chhatwal et al. [13]
= aditional	SVM	R, C	Constructs hyperplanes to maximise data separation	Zhang et al. [14]
for he	NB	С	Utilises Bayesian probability including priors for classification	Olatunji et al. [15]
	RF	R, C	Ensembles predictions of random decision trees	Xiao et al. [16]
	XGB	R, C	As RF, but sequential errors minimised by gradient descent	Liew et al. [17]
	S ANN	1 R, C	Multiplies input by weights and biases to predict outcome	Muhammad [18]
•	CNN	R, C	Uses kernels to detect image features	Suh [19]

Abbreviations: R: regression, C: classification, LR: logistic regression, SVM: support vector machine, NB: naïve Bayes, RF: random forest, XGB: extreme gradient boosting, ANN: artificial neural network, CNN: convolutional neural network.

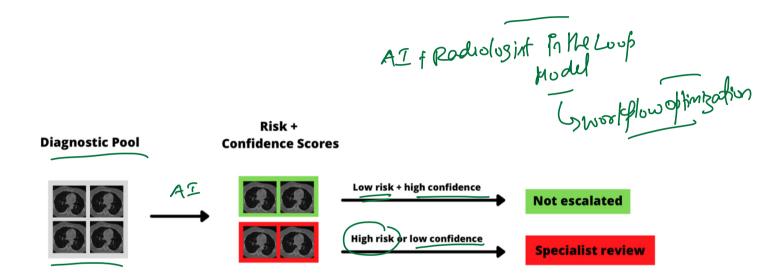

Early Cancer Detection (Lung cancer)

Figure 3. Clinical applications of AI in early cancer diagnosis. Abbreviations: GP: general practitioner, NLP: natural language processing, EHR: electronic healthcare record, ML: machine learning, DL: deep learning, NGS: next-generation sequencing.

Figure 4. Example diagnostic triage pipeline. The AI model assigns a risk group to each examination, as well as a confidence estimate, and scans that are either high risk or have low diagnostic confidence are escalated for specialist review. CT images taken from the public LUNGx dataset [97].

A study showed symptomatic triages from primary care can increase cancer-detection by 6% (based on a decision support tool)
 One study over 1 MM mammograms over 500k women showed that AI based risk scores less than 60% can be safely triaged for no radiologist review!
 The holdbard of the study over the state intervent the state

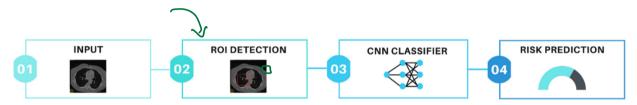
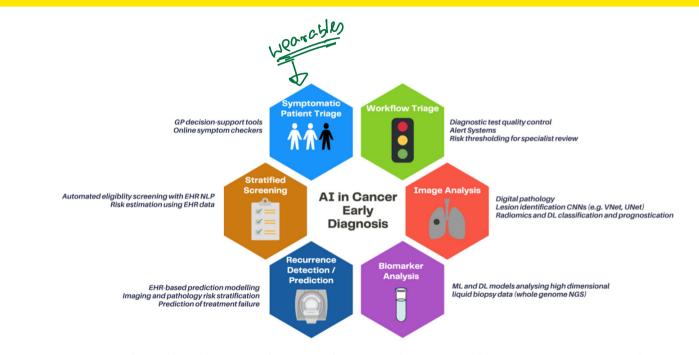
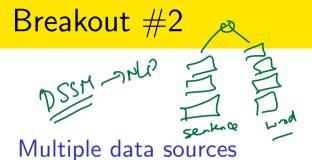
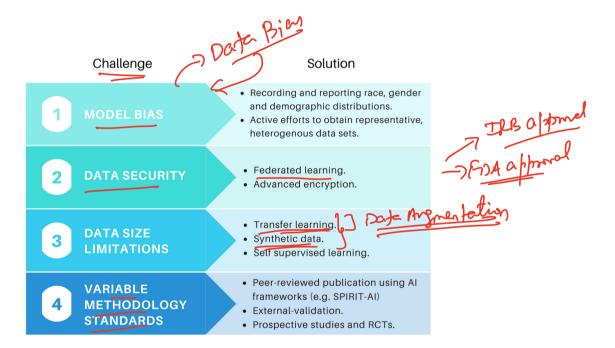
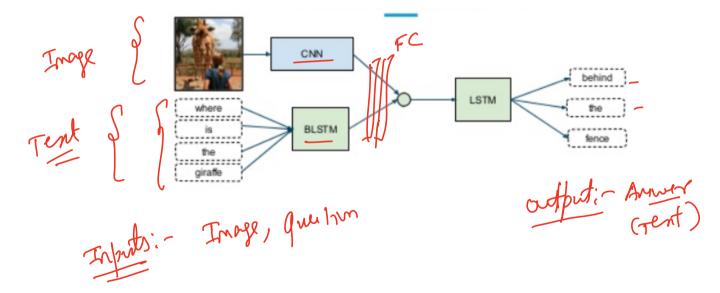




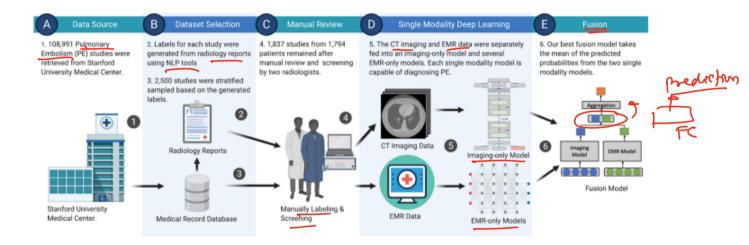
Figure 5. Example of an 'end to end' cancer detection pipeline. 1: A whole CT volume is used as input into the model. 2: A region detection architecture (such as UNet) is used to identify a sub-volume and assign a bounding-box ROI. 3: The volume encompassed by the ROI is input into a classification CNN (such as InceptionNet) to learn patterns associated with the outcome variable. 4: A risk prediction of malignancy is output. Abbreviations: ROI: region of interest, CNN: convolutional neural network. ggi. N°C (ompascible to fadiologist Detechin performance! CT images taken from the public LUNGx dataset [97].


Figure 3. Clinical applications of AI in early cancer diagnosis. Abbreviations: GP: general practitioner, NLP: natural language processing, EHR: electronic healthcare record, ML: machine learning, DL: deep learning, NGS: next-generation sequencing.

Let's say we want to do risk stratification for patients for colorectal cancer. We have access to histopathology reports (including blood chemistry - Wbc, Rbc, Platelets, sodium, potassium levels, etc) and also digital pathology images (biopsy tissue samples). We also have access to recent CT scans from the abdomen/lower-abdomen region. A typical cancer diagnostics would require getting all these tests done and then going to a Oncologist for a diagnosis. Think of a ML model architecture that can extract information from all these different data sources for risk stratification of colorectal cancer.


Sycoros 2 year

ed chu



Multi-model architecture

Multiple Moder of Data -smulti-model

Multi-model architecture

The Role of Artificial Intelligence in Early Cancer Diagnosis. Hunter et al. 2022 US Cancer Statistics