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© Identify your team mate through the spreadsheet
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e
Check-In

© Identify your team mate through the spreadsheet
@ First Check Point/Deadline for Mini-Project due November 6
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© Convolutional Neural Networks - Introduction
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Convolutional Neural Networks - Introduction
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Convolutional Neural Networks - Functionality Breakdown
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A Typical Convolutional Neural Network (CNN)
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Convolutional Neural Networks - Layers Breakdown
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Convolutional Neural Networks - Layers Breakdown
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e
NN vs CNN
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NN vs CNN

© CNN is a special type of NN

e
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e
NN vs CNN

© CNN is a special type of NN
@ Specialized to Images
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e
NN vs CNN

© CNN is a special type of NN
@ Specialized to Images
© FC layers yield too many parameters/weights for NN arch

@ More intuitive feature engineering (in terms of convolutions) done by
CNN as compared to a regular NN
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e
NN vs CNN

CNN is a special type of NN
Specialized to Images

FC layers yield too many parameters/weights for NN arch

© 000

More intuitive feature engineering (in terms of convolutions) done by
CNN as compared to a regular NN

Works on a block with height, width and depth as compared to a NN,
where the layers are encoded as vectors.

o
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e
NN vs CNN
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I
ypes of Layers/Transforms in CNN

S
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FC Layer CE’\DLa:SOJ ->

This is the same as in a feed-forward NN arch. Every neuron in the next

layer is connected to every neuron in previous layer - Hence FC or fully
connected )
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I
ypes of Layers/Transforms in CNN

FC Layer

Ny
This is the same as in a feed-forward NN arch. Every neuron in the next
layer is connected to every neuron in previous layer - Hence FC or fully
connected )

:fjonv an
This is the most important and frequently used layer in a CNN arch - Here

one or_more Convolution Kernels (learned as parameters in training) are
each convolved with the input to produce an output block with the same
depth as the number of convolution kernels.

:—5
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I
ypes of Layers/Transforms in CNN

Pooling Layer

Usually used to reduce the total number of parameters in the CNN
network - Pooling can reduce the number of neurons from one layer to
next with simple operations.
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I
ypes of Layers/Transforms in CNN

Pooling Layer

Usually used to reduce the total number of parameters in the CNN
network - Pooling can reduce the number of neurons from one layer to
next with simple operations.

RELU Activation
Just like in NN arch - RELU is used in CNN as well as a non-linear
transformation of neurons. )
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Conv Layer in CNN
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Conv Layer

Conv Layer Parameters

@ Convolution Kernel - has size WxHxD. Usually(3x3XD)where D is the
depth of the input. If the output block has a depth of K - This

implies K such kernels, are learned in that layer! )
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Conv Layer

Conv Layer Parameters

© Convolution Kernel - has size WxHxD. Usually 3x3xD where D is the
depth of the input. If the output block has a depth of K - This
implies K such kernels are learned in that layer!

Conv Layer Hyper-Parameters

\0/ or depth of the output block or the number of convolution
kernels/filters

@ Stride Lengtﬁ)How much to shift the convolution kernel by when
passing throu he input

?/Zero—Padding;P: How much to pad the input before convolution
(this impacts the output size! )
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Conv Layer
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@ Let £ be the receptive field size of the convolution Kernel
@ Let S be the stride length
© Let P be the zero-padding

@ Width of the output block is now|(W — F +@)/S + 1!
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Convolution with Strides
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Conv Layer Computations
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Conv Layer Computations
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https://cs231n.github.io/convolutional-networks/

I
ICE #1

FC vs CNN

Consider an input block (let's say an input image) of size 100x100x3
(width, height, depth). Depth obviously corresponds to R, G, B. Let's say
the first layer was a Conv layer with 5 kernels of size 3x3x3 with no
zero-padding and a stride length of 1. Note that the output block size is
98x98x5. The number of parameters in this conv layer and the number of
parameters if there was a FC layer instead are closest to:

@ 135 and 1.5 million
L/”//////////i;

@ 1.5 million and 135

@ (135 3nd 1.5 billion
IOSMG\‘n O“‘P/)v-(
‘j(\r)v‘ loof(o\\xf-

©Q 125 and 100 million
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Pooling Layer - Max Pooling Example
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I
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters
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I
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters

@ Usually F =2,5 = 2, i.e non-overlapping pooling with 2x2 size -
Downsample each dimension by 2!
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S
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters

@ Usually F =2,5 =2, i.e non-overlapping pooling with 2x2 size -
Downsample each dimension by 2!

© In pooling - Depth doesn’'t change from input to output layer. So pool

across each depth slice. Contrast this with conv layer - where depth
of output depends on the number of convolution kernels K, used!
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S
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters

@ Usually F =2,5 = 2, i.e non-overlapping pooling with 2x2 size -
Downsample each dimension by 2!

© In pooling - Depth doesn’'t change from input to output layer. So pool
across each depth slice. Contrast this with conv layer - where depth
of output depends on the number of convolution kernels K, used!

© Pooling can be max or average - Max pooling works best!
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ICE 42

Consider you are max pooling with F = 3 and stride length of'3.) By what
percentage have the input block neurons been reduced to in the output
block after max pooling?

Q@ 5%
@ 30 %
© 385 %
Q© 90 %
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I
Real World Example of Conv Net used

Image Net Competition Winner 2012
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https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

96 depth activations learned in First Conv Layer

Image Net 2012 competition prize paper
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https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

I
ICE 43

Max Pool Dimensions

Consider you are max pooling with F = 2 and stride length of 2. Let the
input block be 128x128x15. What would be the dimensions of the output
block after max pooling?

Q@ 64x64x3 X
Q (128x64x15 x
Q 64x64x45 X
g 04x64x15
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I
CNN Layers example
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ICE 4

RELU

Which of the following layers have parameters associated with it and
which have neither parameters nor hyper parameters?

@ (FC, Conv Layer) and (Max Pool)

@ (FC) and (RELU)

@ (FC, Conv Layer) and (RELU) "
© (FC, Conv Layer) and (RELU, Max Pool)
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e
CNN vs NN

— depth
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© Fundamental unit in CNN is a block (with width, W, height H, and
depth D). Fundamental unit in NN is a vector of neurons.

@ NN only has a feedforward connection (mostly) from one vector of
neurons to another. CNN has 3 different types of connections - FC,
Conv, and Pooling.

Qm has full connectivity. CNN has local connectivity (e.g. conv Layer

and Pooling) \/S\’\J e

O Feedforward NN parameter space would be_prohibitively large for
Images. Conv Nets have shared parameter space and keep the

T

parameter space manageable. g
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Next Lecture

/'_/

(1) Popular Conv Nets that have worked in practice

Q Intmtlon behind some of the archs
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