Computer Vision: Fall 2022 — Lecture 10 Dr. Karthik Mohan

Univ. of Washington, Seattle

November 2, 2022

Identify your team mate through the spreadsheet

- Identify your team mate through the spreadsheet
- First Check Point/Deadline for Mini-Project due November 6

- Good Book for Machine Learning Concepts
- **2** Deep Learning Reference
- Convolutional Neural Networks for Visual Recognition
- Convolutional Neural Net Tutorial

Convolutional Neural Networks - Introduction

Convolutional Neural Networks - Introduction

Convolutional Neural Networks - Functionality Breakdown

Convolutional Neural Networks - Functionality Breakdown

Convolutional Neural Networks - Layers Breakdown

Convolutional Neural Networks - Layers Breakdown

- CNN is a special type of NN
- Specialized to Images

- CNN is a special type of NN
- ② Specialized to Images
- Section of the sectio

- CNN is a special type of NN
- Specialized to Images
- Section of the sectio
- More intuitive feature engineering (in terms of convolutions) done by CNN as compared to a regular NN

- CNN is a special type of NN
- Specialized to Images
- Section of the sectio
- More intuitive feature engineering (in terms of convolutions) done by CNN as compared to a regular NN
- Works on a block with height, width and depth as compared to a NN, where the layers are encoded as vectors.

FC Layer (End of CNN)

This is the same as in a feed-forward NN arch. Every neuron in the next layer is connected to every neuron in previous layer - Hence FC or *fully connected*

FC Layer

This is the same as in a feed-forward NN arch. Every neuron in the next layer is connected to every neuron in previous layer - Hence FC or *fully connected*

Conv Layer

This is the most important and frequently used layer in a CNN arch - Here one or more Convolution Kernels (learned as parameters in training) are each convolved with the input to produce an output block with the same depth as the number of convolution kernels.

Pooling Layer

Usually used to reduce the total number of parameters in the CNN network - Pooling can reduce the number of neurons from one layer to next with simple operations.

Pooling Layer

Usually used to reduce the total number of parameters in the CNN network - Pooling can reduce the number of neurons from one layer to next with simple operations.

RELU Activation

Just like in NN arch - RELU is used in CNN as well as a non-linear transformation of neurons.

Conv Layer in CNN

Conv Layer

Conv Layer Parameters

Convolution Kernel - has size WxHxD. Usually 3x3 D where D is the depth of the input. If the output block has a depth of K - This implies K such kernels are learned in that layer!

Conv Layer

Conv Layer Parameters

Convolution Kernel - has size WxHxD. Usually 3x3xD where D is the depth of the input. If the output block has a depth of K - This implies K such kernels are learned in that layer!

Conv Layer Hyper-Parameters

- K or depth of the output block or the number of convolution kernels/filters
- Stride Length, S: How much to shift the convolution kernel by when passing through the input
- Zero-Padding, P: How much to pad the input before convolution (this impacts the output size!)

Computer Vision: Fall 2022 — Lecture 10

Convolution with Strides

Conv Layer Computations

Conv Layer Computations

Conv Layer Computation Animation

ICE #1

FC vs CNN

Consider an input block (let's say an input image) of size $100 \times 100 \times 3$ (width, height, depth). Depth obviously corresponds to R, G, B. Let's say the first layer was a Conv layer with 5 kernels of size $3 \times 3 \times 3$ with no zero-padding and a stride length of 1. Note that the output block size is $98 \times 98 \times 5$. The number of parameters in this conv layer and the number of parameters if there was a FC layer instead are closest to:

Pooling Layer - Max Pooling Example

- Reduces size of layers in CNN and hence reduces number of parameters
- ② Usually F = 2, S = 2, i.e non-overlapping pooling with $2x^2$ size Downsample each dimension by 2!

Pooling Layer

- Reduces size of layers in CNN and hence reduces number of parameters
- ② Usually F = 2, S = 2, i.e non-overlapping pooling with $2x^2$ size Downsample each dimension by 2!
- In pooling Depth doesn't change from input to output layer. So pool across each depth slice. Contrast this with conv layer where depth of output depends on the number of convolution kernels K, used!

Pooling Layer

- Reduces size of layers in CNN and hence reduces number of parameters
- ② Usually F = 2, S = 2, i.e non-overlapping pooling with $2x^2$ size Downsample each dimension by 2!
- In pooling Depth doesn't change from input to output layer. So pool across each depth slice. Contrast this with conv layer where depth of output depends on the number of convolution kernels K, used!
- Pooling can be max or average Max pooling works best!

Consider you are max pooling with F = 3 and stride length of 3. By what percentage have the input block neurons been reduced to in the output block after max pooling?

Real World Example of Conv Net used

Computer Vision: Fall 2022 — Lecture 10

96 depth activations learned in First Conv Layer

Image Net 2012 competition prize paper

Max Pool Dimensions

Consider you are max pooling with F = 2 and stride length of 2. Let the input block be $128 \times 128 \times 15$. What would be the dimensions of the output block after max pooling?

- 🗿 64x64x45 🏼 🗡
- 64x64x15

CNN Layers example

wrhx3

Withinkla

RELU

Which of the following layers have parameters associated with it and which have neither parameters nor hyper parameters?

- (FC, Conv Layer) and (Max Pool)
- (FC) and (RELU)
- (FC, Conv Layer) and (RELU)
- (FC, Conv Layer) and (RELU, Max Pool)

(17961 PARAMS PARAMETERS' LAYEL FC Deputri CONVLATER Est POULETNG Rg. RELU \times

CNN vs NN

- Fundamental unit in CNN is a block (with width, W, height H, and depth D). Fundamental unit in NN is a vector of neurons.
- NN only has a feedforward connection (mostly) from one vector of neurons to another. CNN has 3 different types of connections - FC, Conv, and Pooling.
- In the second second

Feedforward NN parameter space would be prohibitively large for [mages. Conv Nets have shared parameter space and keep the parameter space manageable.

- Popular Conv Nets that have worked in practice
- Intuition behind some of the archs