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Check-In
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© /Convolutional Neural Networks: A comprehensive survey, 2019

© _A survey of Convolutional Neural Networks: Analysis, Applications,
and Prospects, 2021
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©_Top models on ImageNet
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© Convolutional Neural Networks - Recap
© CNN Architectures
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Convolutional Neural Networks - Functionality Breakdown
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Convolutional Neural Networks - Layers Breakdown
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I
ypes of Layers/Transforms in CNN

FC Layer

This is the same as in a feed-forward NN arch. Every neuron in the next
layer is connected to every neuron in previous layer - Hence FC or fully
connected )
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I
ypes of Layers/Transforms in CNN

FC Layer

This is the same as in a feed-forward NN arch. Every neuron in the next
layer is connected to every neuron in previous layer - Hence FC or fully

connected )
fed Loye~) £ J
~ | »
Conv Layer CLO( (marc Loze wu? L :

This is the most important and frequently used layer in"a CNN arch - Here
one or more Convolution Kernels (learned as parameters in training) are
each convolved with the input to produce an output block with the same
depth as the number of convolution kernels.
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I
ypes of Layers/Transforms in CNN

Pooling Layer (Lol toced)

Usually used to reduce the total number of parameters in the CNN
network - Pooling can reduce the number of neurons from one layer to
next with simple operations.
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I
ypes of Layers/Transforms in CNN

Pooling Layer

Usually used to reduce the total number of parameters in the CNN
network - Pooling can reduce the number of neurons from one layer to
next with simple operations.

RELU Activation

Just like in NN arch - RELU is used in CNN as well as a non-linear
transformation of neurons.
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Conv Layer
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-
Conv Layer Parameters ~~<

© Convolution Kernel - has size WxHxD. Usually 3x3xD where D is the
depth of the input. If the output block has a depth of K - This
implies K such kernels are learned in that layer!
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Conv Layer

Conv Layer Parameters

© Convolution Kernel - has size WxHxD. Usually 3x3xD where D is the
depth of the input. If the output block has a depth of K - This
implies K such kernels are learned in that layer!

Conv Layer Hyper-Parameters

(1) ﬁ_or depth of the output block or the number of convolution
kernels /filters

© Stride Length, 5: How much to shift the convolution kernel by when
passing through the input

© Zero-Padding, P: How much to pad the input before convolution
(this impacts the output size!
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Conv Layer

© Let F be the receptive field size of the convolution Kernel
@ Let S be the stride length

© Let P be the zero-padding

© Width of the output block is now (W — F +2P)/5 + 1!
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Convolution with Strides
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Conv Layer Computations
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Conv Layer Computations
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Conv Layer Computation Animation
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https://cs231n.github.io/convolutional-networks/

S
Pooling Layer - Max Pooling Example
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I
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters
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I
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters

@ Usually F =2,5 = 2, i.e non-overlapping pooling with 2x2 size -
Downsample each dimension by 2!
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S
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters

@ Usually F =2,5 =2, i.e non-overlapping pooling with 2x2 size -
Downsample each dimension by 2!

© In pooling - Depth doesn’'t change from input to output layer. So pool

across each depth slice. Contrast this with conv layer - where depth
of output depends on the number of convolution kernels K, used!
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S
Pooling Layer

© Reduces size of layers in CNN and hence reduces number of
parameters

@ Usually F =2,5 = 2, i.e non-overlapping pooling with 2x2 size -
Downsample each dimension by 2!

© In pooling - Depth doesn’'t change from input to output layer. So pool
across each depth slice. Contrast this with conv layer - where depth
of output depends on the number of convolution kernels K, used!

© Pooling can be/max jor average - Max pooling works best!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 11 November 4, 2022 16 /41



I
ICE #1

Max Pooling

Consider you are max pooling with F = 2 and stride length, S =1 and a
zreo padding, P = 0. Consider the input block, I at a depth slice of 4, i.e.
an image matrix, / as below. What is the value at the second row, second
column of the output block corresponding to this depth slice of 47
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6 |
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e
CNN vs NN

ST height

OO0V idth

input layer

hidden layer 1 hidden layer 2

© CNN is a special type of NN
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CNN vs NN
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input layer

hidden layer 1 hidden layer 2

© CNN is a special type of NN
@ Specialized to Images
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e
CNN vs NN

ST height

OO0V idth

input layer
hidden layer 1 hidden layer 2

© CNN is a special type of NN
@ Specialized to Images

© More intuitive feature engineering (in terms of convolutions) done by
‘4
CNN as compared to a regular NN
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e
CNN vs NN

ST height
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© CNN is a special type of NN
@ Specialized to Images

© More intuitive feature engineering (in terms of convolutions) done by
CNN as compared to a regular NN

© Works on a block with height, width and depth as compared to a NN,
where the layers are encoded as vectors.
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e
CNN vs NN

i
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© Fundamental unit in CNN is a block (with width, W, height H, and
depth D). Fundamental unit in NN is a vector of neurons.

@ NN only has a feedforward connection (mostly) from one vector of
neurons to another. CNN has 3 different types of connections - FC,
Conv, and Pooling.

© NN has full connectivity. CNN has local connectivity (e.g. conv Layer
and Pooling)

©Q Feedforward NN parameter space would be prohibitively large for
Images. Conv Nets have shared parameter space and keep the
parameter space manageable.
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I
Next Topic: Popular CNN Architectures

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 11 November 4, 2022 20 /41



.
Popular CNN Architectures

Arch Year Mention Speciality
(LeNed) 1998 !ann(\Léﬁun et al
({7 AlexNet 2012 *Runner-up Deeper, Bigger
- 8 % delta
/FNet 2013 *Winner Improvement on
AlexNet
GoogleNet | 2014 *Winner Inception Module

60 MM — 4 MM params
VGGNet | 2014 *Runner-up Deep network (16 layers)
with 140 MM params
ResNet 2015 *Winner Skip-connections and
Batch-normalization

Table: Why competitions matter? *ILSVRC challenge (Evolution of CNN archs
over the years)
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Popular CNN Architectures

Year CNN Developed By | Error Rates No. of Dataset
—— | Parameters
1998 LeNet Yann LeCun 60 Thousand
2012 AlexNet Alex 153 % 60 Million
Krizhevsky,
Geoffrey / (In@
Hinton and
[lya Sutskever
2013 LFNet Matthew 14.8 % &
Zeiler, Rob
Fergus
2014 GoogleNet Google 6.67 % 4 Million
2014 VGGNet Simonyan, 7.3 % 138 Million
Zisserman
2015 ResNet Kaiming He 3.6 %

(Univ. of Washington, Seattle)
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I
ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

—

ILSVRC Benchmark
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ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes
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ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes

© DataSet: 1.3 MM training images, 50k validation and 1 MM test
images r

ILSVRC Benchmark
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I
ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes

© DataSet: 1.3 MM training images, 50k validation and 1 MM test
Images

@ ILSVRC - Challenge on to improve classification accuracy
(ImageNet Large Scale Visual Recognition Challenge)

C—

ILSVRC Benchmark
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I
ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes

© DataSet: 1.3 MM training images, 50k validation and 1 MM test
Images

@ ILSVRC - Challenge on Image-Net to improve classification accuracy
(ImageNet Large Scale Visual Recognition Challenge)

© Metric: Top-k error rate. Is any of the models top k results the
correct label? B

Top-1 TR roclef (o, TIK -1
<) ot D7 peroficy

ILSVRC Benchmark
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S
ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes

© DataSet: 1.3 MM training images, 50k validation and 1 MM test
Images

@ ILSVRC - Challenge on Image-Net to improve classification accuracy
(ImageNet Large Scale Visual Recognition Challenge)

© Metric: Top-k error rate. Is any of the models top k results the
correct label?

@ Current best Top 1 accuracy at 90 % - COCA model.

(-9%7,7,

ILSVRC Benchmark
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S
ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes

© DataSet: 1.3 MM training images, 50k validation and 1 MM test
Images

@ ILSVRC - Challenge on Image-Net to improve classification accuracy
(ImageNet Large Scale Visual Recognition Challenge)

© Metric: Top-k error rate. Is any of the models top k results the
correct label?

@ Current best Top-1 accuracy at 90 % - COCA model.
@ Current best Top-5 accuracy at 99 ‘LA) - Florence-CoSwim-H model

e

a—

ILSVRC Benchmark
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I
ImageNet Data Set and ILSVRC

© ImageNet: Launched in 2009 by Fei-Fei Li to have a large scale and
clean image data set for benchmarking

@ Classes: 1000 classes

© DataSet: 1.3 MM training images, 50k validation and 1 MM test
Images

@ ILSVRC - Challenge on Image-Net to improve classification accuracy
(ImageNet Large Scale Visual Recognition Challenge)

© Metric: Top-k error rate. Is any of the models top k results the
correct label?

@ Current best Top-1 accuracy at 90 % - COCA model.
@ Current best Top-5 accuracy at 99 % - Florence-CoSwim-H model

G@ta Pseudo-ﬁ@performs well on both Top-1 and Top-5
accuracy '\:9204 5

—
ILSVRC Benchmark S
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I
ICE 42

Top k accuracy metric

Suppose you trained your favorite CNN model based on one of these archs
(say VGGnet). Your model predicts the top 5 results for each of the
following examples as follows:

True Label Top 5 Predictions
Cat {Cat, Dog, Mouse, Rabbit, Tiger }
Dog {Cat, Mouse, Rabbit, Dog, Tiger }

Rabbit { Rabbit, Dog, Mouse, Tiger, Cat }
Bear { Dog, Cat, Rabbit, Tiger, Mouse }
Tiger { Cat, Dog, Tiger, Rabbit, Bear }

Table: 5 Test Examples
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ICE #2
True Label | Top 5 Predictions
— Cat {Cat, Dog, Mouse, Rabbit, Tiger } =+
Dog {Cat, Mouse, Rabbit, Dog, Tiger }

—_ Rabbit { Rabbit, Dog, Mouse, Tiger, Cat }
Bear { Dog, Cat, Rabbit, Tiger, Mouse } x
Tiger { Cat, Dog, Tiger, Rabbit, Bear } -

Table: 5 Test Examples

What's the Top-1 and Top-5 accuracy scores averaged over these 5
examples?

@ 40 % and 60 %
O 60 % and 60 %
@ 40 % and 75 %
Q@ 40 % and 80 %
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op-1 Accuracy Evolution

Leaderboard Dataset

View Top 1 Accuracy v by Date
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Top models on ImageNet
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op-5 Accuracy Evolution

Leaderboard Dataset

View Top 5 Accuracy v by Date v | for All models v
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Top models on ImageNet
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Popular CNN Architectures

N\

AN

Year CNN Developed By | Error Rates No. of Dataset
Parameters
1998 LeNet Yann LeCun 60 Thousand
2012 AlexNet Alex 153 % 60 Million
Krizhevsky,
Geoffrey [mageNet
Hinton and
[lya Sutskever
2013 LFNet Matthew 14.8 %
— Zeiler, Rob
Fergus
2014 (z00gleNet Google 6.67 % 4 Million
2014 VGGNet Simonyan, 7.3 % 138 Million
S Zisserman
2015 ResNet Kaiming He 3.6 %

(Univ. of Washington, Seattle)
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LeNet
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e
AlexNet

X4 . |
s o :'-_w::—‘—‘ o i 3 Y -
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. - Con/ il 3FCA
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© Incorporates RELU

© Deeper layers than LeNet

© Developed to measure lateral distance between vehicles
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2832 FC
N
image size 224 110 2 13 13 13 L
filter size 7 ~—
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© Hyper-parameter Tweaking in AlexNet — d-?y— X Ee7 6

@ Small changes in structure

© Number of params same as AIexNet: :H—Pm&v"”b:

© Top 5 Accuracy at 85.3% up from 84.6% of AlexNet g—ﬂr:“ +

— CH™M+F )
{444{‘ = gl/—
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VGGNet
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(Univ. of Washington, Seattle)
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VGGNet

@ Top 5 Accuracy at 92% of VGGNet, up from 85.3% of ZFNet!
© Runner up in the 2014 competition
—— —

© Number of param5'<138MM,>|p from 60MM of ZFNet!
@ Quite popular for im: eddings and representations

© Prone to over-fit - Obviously!

O Applications: Finger-print biometric authentication, crack detection,
object tracking. o

=
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Inception/GoogleNet Motivation
Linat g 20& TLSW <

ettt S

(a) Siberian husky (b) Eskimo dog
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S
Inception/GoogleNet
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I
Inception/GoogleNet

et

@ Top 5 Accuracy at 94.4% up from 92% of VGGNet

<

@ Introduced an Inception Module

© Has many more layers than AlexNet or ZFNet!
Q 22 layers deep!

© Number of params: 4MM, down from 60MM of ZFNet!

—
C—
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Inception Module

I 3% OFS Ma%?uv/( =]
4 =
WS

uxd'
Filter
F

concatenation

i

ilter
/A
( = 3x3 convolutions , 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling 1x1 convolutions r ) )
) ¢
c } — 1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer Previous layer

Cuf\'\’

Filled

(a) InCeption module, naive version (b) Inception module with dimension reductions

—

© Concatenates the depth from each of the convolutions
@ Allows for looking at the input at different scales (1x1, 3x3, 5x5, etc)

© Let's the model use information from all scales

e
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ICE 43

_ — ) (e d) X2 AR "y
Inceptionf (2 D ”{‘MWW R

Consider the inception Module used by GoogleNet as one of its layers.
Between the reduced dimension version on the right and the one on the
onstant fact@is the computational complexity reduced for

et

the 3x3 and 5x5 conv layers inside the module?

left - By what
the combination o

Tonfa L
OC 3/ /, _70C ’}

5x5

luti

/

3x3 max pooling

(a) Inception module, naive version
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concatenation

1x1 convolutions
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(b) Inception module with dimension reductions
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Inception /GoogleNet Breakdown

’—'lnf-bly){m—-{) || 2wz Sx€ H&')\V\:oﬂ

type pa::ll;;:ze/ 01;:::t depth #1x1 ii;iz #3X3 ﬁiig #5X5 g::; params ops
convolution TXT/2 112x112x64 1 27K 34M
max pool 3x3/2 56 X 56 X 64 0
convolution 3x3/1 56X 56x192 2 64 192 112K 360M
max pool 3x3/2 28X28x192 0
| inception (3a) 28X28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x 28 X480 2 (128 || 128 192 32 (96 64 | | 380K | 304M
max pool | 3x3/2 14X 14 x 480 0 pa— — — ~>§&
inception (4a) 14%x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14%x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14%x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14%x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14832")| 2 256 160 320 32 128 128 840K | 170M
max pool 3x3/2 7X7Tx832 | 0
inception (5a) TXTx832 2 256 160 320 32 128 128 1072K 54M
? inception (5b) TXT X@@ 2 384 192 384 48 128 128 1388K 71IM
@epoors | 7x7/1 1x1x1024 0 -
dropout (40%) 1x1x1024 0
}ﬂar N 1x1x1000 1 1000K 1M
softmax A 1% 1x1000 0
&
—
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Inception Visual walkthrough
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Next Lecture

O ResNet
©Q ResNeXt
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