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e
Check-In

© How did the first checkpoint on the MP1 go?
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e
Check-In

© How did the first checkpoint on the MP1 go?

@ Fill out the mid-course survey if you haven't yet!

—
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CNN Publication References

©® Convolutional Neural Networks: A comprehensive survey, 2019

© A survey of Convolutional Neural Networks: Analysis, Applications,
and Prospects, 2021

© GooglelNet
@ Top models on ImageNet

@ResNet ILSVRC paper
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© CNN Architectures Recap
© ResNet
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Popular CNN Architectures Recap

Arch Year Mention Speciality
@Net) 1998 | Yann LeCun et al
AlexNet 2012 *Runner-up Deeper, Bigger
- 8 % delta
/FNet 2013 *Winner Improvement on
- AlexNet
GoogleNet | 2014 *Winner Inception Module
60 MM — 4 MM params
VGGNet | 2014 *Runner-up Deep network (16 layers)
- with 140 MM params
ResNet 2015 *Winner Skip-connections and
- Batch-normalization

Table: Why competitions matter? *ILSVRC challenge (Evolution of CNN archs

over the years)

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 12 November 9, 2022

6 / 40



Popular CNN Architectures Recap

w/k'»ﬂf/&

Year CNN Developed By | Error Rates No. of Dataset
Parameters
1998 LeNet Yann LeCun 60 Thousand
2012 AlexNet Alex 153 % 60 Million
Krizhevsky,
Geoffrey [mageNet
Hinton and
[lya Sutskever
2013 LFNet Matthew 14.8 %
Zeiler, Rob
Fergus
2014 GoogleNet Google 6.67 % Q’l_illion >
2014 VGGNet Simonyan, 7.3 % 138 Million 1+, N.,—it
Zisserman —
2015 ResNet Kaiming He 3.6 %
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op-1 Accuracy Evolution
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https://paperswithcode.com/sota/image-classification-on-imagenet

op-5 Accuracy Evolution

Leaderboard Dataset
View Top 5 Accuracy v by Date v | for All models v
105 —
100 - Florence-CoSwin-H
./ FixResNeXt-101 32x48d
qg . AmoebaNet=A
. ResNeX 1 64x4
- > 95 Inception V3
= VGG-19
0
(@) MSRA
Q 90 —— ~
z Five Base + Five HiRes
cs
80
75
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Other models Models with highest Top 5 Accuracy

Top models on ImageNet

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 12 November 9, 2022 9 /40


https://paperswithcode.com/sota/image-classification-on-imagenet

Popular CNN Architectures

Year CNN Developed By | Error Rates No. of Dataset
Parameters
1998 LeNet Yann LeCun 60 Thousand
2012 AlexNet Alex 153 % 60 Million
Krizhevsky,
/ Geoffrey [mageNet
Hinton and
[lya Sutskever
2013 LFNet Matthew 14.8 %
- Zeiler, Rob
Fergus
- 2014 GoogleNet Google 6.67 % 4 Million
Pt VGGNet Simonyan, 7.3 % 138 Million
N Zisserman
015 | (RelNet ) | KaimingHe |  36%
N——
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AlexNet

dense ense
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© Incorporates RE__U /g

© Deeper layers than LeNet
© Developed to measure lateral distance between vehicles
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e
ZFNet

image size 224 110 26 = 13 13 n o
filter size 7 3 ¢3
| w384 | w384 - 2
X NN N
stride 2 '}26 s 53 max | C
3x3 max poolf | contras pool| |contrast pool 4096 4096 class
e _chent on | stide 2 units| | units| | softmax

‘\355

\
256 . LZ% U

Layer | Layer 2 layer3  Layerd Layer 5 Layer6 Layer7  Output

Input Image

@ Hyper-parameter Tweaking in AlexNet

@ Small changes in structure
© Number of params same as AlexNet: 60MM!
@ Top 5 Accuracy at 85.3% up from 84.6% of AlexNet
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VGGNet
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VGGNet

© Top 5 Accuracy at 92% of VGGNet, up from 85.3% of ZFNet!
© Runner up in the 2014 competition

© Number of params: Bﬂl\ﬂ, up from 60MM of ZFNet!

@ Quite popular for image embeddings and representations

© Prone to over-fit - Obviously!

O Applications: Finger-print biometric authentication, crack detection,
object tracking.
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S
Inception/GoogleNet Motivation

(a) Siberian husky (b) Eskimo dog
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S
Inception/GoogleNet

LI HTHH T

Convolution
Pooling

Other
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I
Inception/GoogleNet

@ Top 5 Accuracy at 94.4% up from 92% of VGGNet

@ Introduced an Inception Module

© Has many more layers than AlexNet or ZFNet!

Q 22 layers deep!

© Number of params: 4MM, down from 60MM of ZFNet!
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Inception Module

|

3x3 max pooling

Filter
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Previous layer

[}
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(a) Inception module, naive version (b) Inception module with dimension reductions

© Concatenates the depth from each of the convolutions

@ Allows for looking at the input at different scales (1x1, 3x3, 5x5, etc)

© Let's the model use information from all scales
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I
Inception /GoogleNet Breakdown

Ul

ype pa::ll;(::ze/ m;:::t depth #1x1 ﬁi:j #3X3 ﬁ:if F#5X%X5 g::; params ops

convolution TXT/2 112x112x64 1 2.7K 34M

ool 3x3/2 56 X 56 X 64 0
convolution 3x3/1 56X 56x192 2 64 192 112K 360M

max pool 3x3/2 28X 28X 192 0
r inception (3a) 28X 28x256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28 x28x%x480 2 128 128 192 32 96 64 380K 304M

max pool 3x3/2 14x14x480 0
inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
v inception (4b) 14%x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M

max pool 3x3/2 7TXTx832 0
inception (5a) 7TXTX832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7TX7x1024 2 384 192 384 48 128 128 1388K 71IM

avg pool TXT/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 1 1000K IM
softmax 1x1x1000 0
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Popular CNN Architectures

Year CNN Developed By | Error Rates No. of Dataset
Parameters
1998 LeNet Yann LeCun 60 Thousand
2012 AlexNet Alex 153 % 60 Million
Krizhevsky,
Geoffrey [mageNet
Hinton and
[lya Sutskever
2013 LFNet Matthew 14.8 %
Zeiler, Rob
Fergus
2014 GoogleNet Google 6.67 % 4 Million
2014 VGGNet Simonyan, 7.3 % 138 Million
Zisserman
(015) | ResNet | KimingHe | 36%

N w'uv\l'{ Z’L/g\/ﬂ;c Roﬁ(
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ResNet
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ResNet Arch
Y
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ResNet ILSVRC paper
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https://arxiv.org/pdf/1512.03385.pdf

-
ResNet Motivation

(U”‘ "Tm/l o
= WM(”F‘ D’
@ ResNet - Short for Residual Networks —

© Residual - Residue with respect to a reference
A rereren

© Ability to train “deeper networks”’ more effectively than plain nets
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I
Plain Nets Degradation
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ResNet ILSVRC paper
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https://arxiv.org/pdf/1512.03385.pdf

I
ICE #1

Degradation or Over-fitting?

\\ _'T'QO\'h

)

The authors claim that the phenomenon we see above for plain networks is
not over-fitting but a degradation in the network. What aspect of the

graph hints at this? } pes-c wr
s Sl

'30/' ({As the train error keeps going down, the validation error isn't going
(;\!““!’ “lup at any point ]
on?
© Both a) and b) A) N L
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Issues with DeepNets
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© Vanishing or Exploding Gradients! } W;\Nf/

)
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Issues with DeepNets

© Vanishing or Exploding Gradients!

© Batch Normalization - Normalization of layers ensures this doesn't

happen (B
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Issues with DeepNets

© Vanishing or Exploding Gradients!

© Batch Normalization - Normalization of layers ensures this doesn't
happen

© Despite Batch Normalization, authors saw a degradation with Plain
Deep Nets

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 12 November 9, 2022 27 /40



Issues with DeepNets

© Vanishing or Exploding Gradients!

© Batch Normalization - Normalization of layers ensures this doesn't
happen

© Despite Batch Normalization, authors saw a degradation with Plain
Deep Nets

@ And this wasn't over-fitting!
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Issues with DeepNets

© Vanishing or Exploding Gradients!

© Batch Normalization - Normalization of layers ensures this doesn't
happen

© Despite Batch Normalization, authors saw a degradation with Plain
Deep Nets

@ And this wasn't over-fitting!

© Ideally a DeeperNet should do at least as better as a shallow net if no
over-fitting

.Y
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ResNet vs Plain Nets

e
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

ResNet ILSVRC paper
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I
ResNet Building Block
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F(x) i relu
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Flx) +x relu C
= -
Figure 2. Residual learning: a building block. Z_e,.f ‘0(/‘/"4
- e o
/

ResNet ILSVRC paper
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Motivation for the ResNet building block

ResNet ILSVRC

(Univ. of Washington, Seattle)
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I
ICE 42

ResNet Building Block

X

Y

weight layer
f(x) relu

Y e

weight Eer

identity
F(x) +x

Figure 2. Residual le.aﬁ'ing: a building block.

Consider the ResNet building block as above. The only thing different
from a plain-net is the short-cut connection. The output of this block is
F(x) + x, where F(x) refers to the “residual” from the Identity mapping
x. If Wi, W5 are the weights of the first and second layer and assume it's
just a feedforward network and not a convNet layer and o represents the

non-linear RELU activation. How would you represent the output of this
block?

ResNet ILSVRC paper
(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 12 November 9, 2022 31/40



https://arxiv.org/pdf/1512.03385.pdf

I
ICE 42

ResNet Building Block

weight layer
F(x) Jrelu —

weight layer

identity

F(x) +x
Figure 2. Residual Fearning: a building block.
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Q@ o(Who(Wix))+ x K "/ipf;(/
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Q o(Wio(Whx) + x)

ResNet ILSVRC paper
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e
ResNet Sizes

“
layer name | output size 18-layer l { 34-layer }I 50-layer l 101-layer I 152-layer
convl 112x112 \_/ 7x7, 64, stride 2 —
0} 33 max pool, stride 2
1x1, 64 1x1,64 ] 1x1,64 ]
2 56x56 ’ , ’
convex % [;iggj] 2 {3224 x3 3x3,64 |x3 3x3,64 |x3 3x3,64 |x3
’ ’ | [ 1x1,256 1x1,256 | 1x1,256 |
- : - - 1x1, 128 1x1,128 ] 1x1,128 ]
comv3x | 28x28 gig 32 X2 gig gg x4 | | 3x3,128 | x4 | | 3x3,128 | x4 3x3,128 | x8
L ’ J L ’ 1= 1x1,512 1x1,512 | 1x1,512 |
- . r . 1x1,256 1x1,256 ] 1x1,256
convdx | 14x14 gig ggg X2 iiiﬁig x6 | | 3x3.256 | x6 || 3x3.256 |x23 || 3x3.256 |x36
s ’ J L ’ J = || 1x1, 1024 1x1,1024 | 1x1,1024 |
- . - - 1x1,512 1x1,512 1x1,512
comsx | () |[ 7352 Lo [[23:52 s || 35502 s [ 55550 |es | | 555502 [
L ’ J Lo le [ 1><1,2048J 1x1,2048 [1><1,2048J
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° [ 3.6x10° | 3.8x | 7.6x10° | 11.3x10°

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

ResNet ILSVRC paper
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Resnet Results on Imagenet/Training
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

ResNet ILSVRC paper
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Resnet Results on Imagenet/Validation

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.431
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 244 71
PReLU-net [13] 21.59 571 T
BN-inception [16] 21.99 _5_8_1 —
ResNet—?ﬁ B 21.84 5.71
d, ResNet-34 C 21.53 5.60 \L
wb) ResNet—S/O 20.74 5.25
—— ResNet-101 19.87 4.60
- ResNet-152 19.38 4&_9"> &

=

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

ResNet ILSVRC paper
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Resnet Results on Imagenet/

est Set

method top-5 err. (test)
VGG [41] (ILSVRC’14) 7.32
GoogleNet [44] (ILSVRC’14) 6.66
VGG [41] (v5) 6.8 «—
PReLU-net [13] 4.94
BN-inception [16] 4.82 ¢~
ResNet (ILSVRC’15) 3.57

—

Table 5. Error rates (%) of ensembles. The top-5 error is on the
test set of ImageNet and reported by the test server.

ResNet ILSVRC paper
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Resnet Results on CIFAR

K’w method error (%)
% Maxout [10] 9.38
Cj(//f(@’ NIN [25] 8.81
“ DSN [24] 8.22
/G;O\L\ # layers | # params
[ &> o FitNet [35] 19 2.5M | 8.39
X fo Highway [42, 43] 19 2.3M | 7.54 (7.7240.16)
& Highway [42, 43] | 32 125M | 8.80
,\‘6 ResNet 20 0.27M | 8.75
ResNet 32 046M | 7.51
ResNet 44 0.66M | 7.17
ResNet 56 0.85M | 6.97 07
ResNet 110 0 1.7M 6.43 (6.6140.16)
(ResNet 12027 | 19.4M&] 7ﬁ% 2
— — m—— =

Table 6. Classification error on the CIFAR-10 test set. All meth-
ods are with data augmentation. For ResNet-1 10, we run it 5 times
and show “best (mean+-std)” as in [43].
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e
Resnet Results on CIFAR

ResNet-20 = residual-110
ResNet-32 ~ residual-1202
ResNet-44

~=ResNet-56

—ResNet-110

| 1 e | I
plain-32
plain-44
—plain-56 s F—-——=—-=-—=-=-—-—--—
0 — - I 0 - e ST oLz .
0 1 2 3 4 5 6 0 1 2 3 4 5 6 4 6

5
i ‘itcrilc4) i L ) iter. (led) ) __ iter. (led)

Training on CIFAR-10. Dashed lines denote training error, and bold lines
denote testing error. Left: plain networks. The error of plain-110 is higher
than 60
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ResNet-20 = residual-110

ResNet-32 — residual-1202

ResNet-44
~=ResNet-56
=—ResNet-110

plain-20  ~ T~ T T T T T oo T T T = - S — - — — = Ny “\;'75~‘:‘|| —————————— - S m————- === - — —
plain-32
plain-44 ]
—plain-56 LS g —-———==== === —
: s L . : 0 : = o R el s olizsmme
0 1 2 3 4 5 6 0 1 2 3 4 5 6 4 5 6
iter. (le4) iter. (led) iter. (le4)

What's going on?

What's going on with the right most figure? The 1000 layer ResNet

actually has a worse validation error than the 100 layer ResNet. What's
the likely explanation for this?

© Degradation
@ Overfitting ¢— <.)
© Optimization issues

Q@ All of the above )
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Next Lecture

© Pre-Training CV models
@ Object Detection and Image Segmentation
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