Computer Vision: Fall 2022 — Lecture 12 Dr. Karthik Mohan

Univ. of Washington, Seattle

November 9, 2022

1 How did the first checkpoint on the MP1 go?

How did the first checkpoint on the MP1 go?
Fill out the mid-course survey if you haven't yet!

- Good Book for Machine Learning Concepts
- ② Deep Learning Reference
- Onvolutional Neural Networks for Visual Recognition
- Convolutional Neural Net Tutorial

- Convolutional Neural Networks: A comprehensive survey, 2019
- A survey of Convolutional Neural Networks: Analysis, Applications, and Prospects, 2021
- GoogLeNet
- Top models on ImageNet
- **B**ResNet ILSVRC paper

CNN Architectures Recap

2 ResNet

Popular CNN Architectures Recap

Arch	Year	Mention	Speciality	
LeNet	1998	Yann LeCun et al		
AlexNet	2012	*Runner-up	Deeper, Bigger	
			8 % delta	
ZFNet	2013	*Winner	Improvement on	
			AlexNet	
GoogLeNet	2014	*Winner	Inception Module	
			$60 \text{ MM} \rightarrow 4 \text{ MM}$ params	
VGGNet	2014	*Runner-up	Deep network (16 layers)	
			with 140 MM params	
ResNet	2015	*Winner	Skip-connections and	
			Batch-normalization	

Table: Why competitions matter? *ILSVRC challenge (Evolution of CNN archs over the years)

6 / 40

Popular CNN Architectures Recap

Year	CNN	Developed By	Error Rates	No. of Parameters	Dataset
1998	LeNet	Yann LeCun		60 Thousand	
2012	AlexNet	Alex Krizhevsky, Geoffrey Hinton and Ilya Sutskever	15.3 %	60 Million	ImageNet
2013	ZFNet	Matthew Zeiler, Rob Fergus	14.8 %		
2014	GoogleNet	Google	6.67 %	4 Million	
2014	VGGNet	Simonyan, Zisserman	7.3 %	138 Million	P Moreps
2015	ResNet	Kaiming He	3.6 %		

Top-1 Accuracy Evolution

Top models on ImageNet

Top-5 Accuracy Evolution

Top models on ImageNet

Popular CNN Architectures

	Year	CNN Developed By		Error Rates	No. of Parameters	Dataset
	1998	LeNet	Yann LeCun		60 Thousand	
/	2012	AlexNet	Alex Krizhevsky, Geoffrey Hinton and Ilya Sutskever	15.3 %	60 Million	ImageNet
	2013	ZFNet	Matthew Zeiler, Rob Fergus	14.8 %		
	2014	GoogleNet	Google	6.67 %	4 Million	
	2014	VGGNet	Simonyan, Zisserman	7.3 %	138 Million	
	2015	ResNet	Kaiming He	3.6 %		

AlexNet

- Incorporates RELU
- Oeeper layers than LeNet
- Overloped to measure lateral distance between vehicles

ZFNet

- Hyper-parameter Tweaking in AlexNet
- Small changes in structure
- Number of params same as AlexNet: 60MM!
- Top 5 Accuracy at 85.3% up from 84.6% of AlexNet

VGGNet

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 12 November 9, 2022

- Top 5 Accuracy at 92% of VGGNet, up from 85.3% of ZFNet!
- Q Runner up in the 2014 competition
- Number of params: 138MM, up from 60MM of ZFNet!
- Quite popular for image embeddings and representations
- Prone to over-fit Obviously!
- O Applications: Finger-print biometric authentication, crack detection, object tracking.

Inception/GoogleNet Motivation

(b) Eskimo dog

Inception/GoogLeNet

- Top 5 Accuracy at 94.4% up from 92% of VGGNet
- Introduced an Inception Module
- Has many more layers than AlexNet or ZFNet!
- 22 layers deep!
- Number of params: 4MM, down from 60MM of ZFNet!

Inception Module

- (b) Inception module with dimension reductions
- Concatenates the depth from each of the convolutions
- Allows for looking at the input at different scales (1x1, 3x3, 5x5, etc) 2
- Let's the model use information from all scales

Inception/GoogleNet Breakdown

Ù	me)											
	type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	$\#5 \times 5$	pool proj	params	ops
(convolution	$7 \times 7/2$	$112 \times 112 \times 64$	1							2.7K	34M
	max pool	$3 \times 3/2$	$56 \times 56 \times 64$	0								
	convolution	$3 \times 3/1$	$56 \times 56 \times 192$	2		64	192				112K	360M
	max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
	inception (3a)		$28{ imes}28{ imes}256$	2	64	96	128	16	32	32	159K	128M
	inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
	max pool	$3 \times 3/2$	$14 \times 14 \times 480$	0								
	inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
♥	inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
	inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
	inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
	inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
	max pool	$3 \times 3/2$	$7 \times 7 \times 832$	0								
	inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
	inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
	avg pool	$7 \times 7/1$	$1 \times 1 \times 1024$	0								
	dropout (40%)		$1 \times 1 \times 1024$	0								
	linear		$1 \times 1 \times 1000$	1							1000K	1M
	softmax		$1 \times 1 \times 1000$	0								

Popular CNN Architectures

Year	CNN	Developed By	Error Rates	No. of Parameters	Dataset
1998	LeNet	Yann LeCun		60 Thousand	
2012	AlexNet	Alex Krizhevsky, Geoffrey Hinton and Ilya Sutskever	15.3 %	60 Million	ImageNet
2013	ZFNet	Matthew Zeiler, Rob Fergus	14.8 %		
2014	GoogleNet	Google	6.67 %	4 Million	
2014	VGGNet	Simonyan, Zisserman	7.3 %	138 Million	
2015	ResNet	Kaiming He	3.6 %		

(Univ. of Washington, Seattle)

ResNet Arch

ResNet ILSVRC paper (Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 12

ResNet Motivation

Rein

- ResNet Short for Residual Networks
- Residual Residue with respect to a reference
- Ability to train "deeper networks" more effectively than plain nets

Plain Nets Degradation

ICE #1

The authors claim that the phenomenon we see above for plain networks is not over-fitting but a degradation in the network. What aspect of the graph hints at this?

I High train error for the 34 layer net vs the 18 layer 7 beground

As the train error keeps going down, the validation error isn't going up at any point () None of the above

Vanishing or Exploding Gradients!

Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalization - Normalization of layers ensures this doesn't happen
 Batch Normalization - Normalizat

- **1** Vanishing or Exploding Gradients!
- Batch Normalization Normalization of layers ensures this doesn't happen
 happen
 A second statements
 A sec
- Oespite Batch Normalization, authors saw a degradation with Plain Deep Nets

- Vanishing or Exploding Gradients!
- Batch Normalization Normalization of layers ensures this doesn't happen
 happen
 A second statements
 A sec
- Oespite Batch Normalization, authors saw a degradation with Plain Deep Nets
- And this wasn't over-fitting!

- **1** Vanishing or Exploding Gradients!
- Batch Normalization Normalization of layers ensures this doesn't happen
- Oespite Batch Normalization, authors saw a degradation with Plain Deep Nets
- And this wasn't over-fitting!
- Ideally a DeeperNet should do at least as better as a shallow net if no over-fitting

Identi

ResNet vs Plain Nets

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

ResNet Building Block

Motivation for the ResNet building block

ResNet ILSVRC paper (Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 12

November 9, 2022

ICE #2

ResNet Building Block

Consider the ResNet building block as above. The only thing different from a plain-net is the short-cut connection. The output of this block is F(x) + x, where F(x) refers to the "residual" from the Identity mapping x. If W_1 , W_2 are the weights of the first and second layer and assume it's just a feedforward network and not a convNet layer and σ represents the non-linear RELU activation. How would you represent the output of this block?

ResNet ILSVRC paper

(Univ. of Washington, Seattle)

November 9, 2022

ResNet Building Block

Figure 2. Residual learning: a building block.

ResNet Sizes

		-		-7 /	-	
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112			7×7, 64, stride 2	2 —	
			d: off	3×3 max pool, stric	de 2	
conv2_x	56×56	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\begin{bmatrix} 3\times3, 64\\ 3\times3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\3\times3,128\end{array}\right]\times2$	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128\\ 3 \times 3, 128\\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256\end{array}\right]\times2$	$\begin{bmatrix} 3\times3,256\\3\times3,256\end{bmatrix}\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256\\ 3 \times 3, 256\\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\begin{bmatrix} 3\times3,512\\ 3\times3,512\end{bmatrix}\times2$	$\begin{bmatrix} 3\times3,512\\ 3\times3,512\end{bmatrix}\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
1×1 average pool, 1000-					softmax	
FL0	OPs	1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10^{9}

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Resnet Results on Imagenet/Training

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Resnet Results on Imagenet/Validation

	method	top-1 err.	top-5 err.	
-	VGG [41] (ILSVRC'14)	-	8.43^{\dagger}	
	GoogLeNet [44] (ILSVRC'14)	-	7.89	
-	VGG [41] (v5)	24.4	71	
	PReLU-net [13]	21.59	5.71	
	BN-inception [16]	21.99	5.81	
C	ResNet-34 B	21.84	5.71	
	ResNet-34 C	21.53	5.60	
1	ResNet-50	20.74	5.25 🗸	7 /
	ResNet-101	19.87	4.60	- L
L	ResNet-152	19.38	4.49	

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

Resnet Results on Imagenet/Test Set

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8 🧲
PReLU-net [13]	4.94
BN-inception [16]	4.82 🕂
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

Resnet Results on CIFAR

4 Clanes				
at and a	me	ethod		error (%)
(10)	Maxo	out [10]		9.38
THE	NIN	N [25]		8.81
	DSI	N [24]		8.22
GOF		# layers	# params	
for the f	FitNet [35]	19	2.5M	8.39
K foot	Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Salar	Highway [42, 43]	32	1.25M	8.80
	ResNet	20	0.27M	8.75
	ResNet	32	<u>0.46</u> M	7.51
	ResNet	44	0.66M	7.17
	ResNet	56	0.85M	6.97
	ResNet 110 1.7M			6.43 (6.61±0.16) 7 ? ?
	ResNet	1202	19.4M	7.93

Table 6. Classification error on the **CIFAR-10** test set. All methods are with data augmentation. For ResNet-110, we run it 5 times and show "best (mean \pm std)" as in [43].

ResNet ILSVRC paper

(Univ. of Washington, Seattle)

November 9, 2022

Resnet Results on CIFAR

Training on CIFAR-10. Dashed lines denote training error, and bold lines denote testing error. Left: plain networks. The error of plain-110 is higher than 60 ResNet ILSVRC paper

What's going on?

What's going on with the right most figure? The 1000 layer ResNet actually has a worse validation error than the 100 layer ResNet. What's the likely explanation for this?

- Degradation
- Overfitting (S
- Optimization issues
- All of the above

(Univ. of Washington, Seattle)

Pre-Training CV models

Object Detection and Image Segmentation