Computer Vision: Fall 2022 — Lecture 14 Dr. Karthik Mohan

Univ. of Washington, Seattle

November 16, 2022

Generic ML/DL

- Good Book for Machine Learning Concepts
- ② Deep Learning Reference

CNN

- Convolutional Neural Networks for Visual Recognition
- ② Convolutional Neural Net Tutorial
- ONN Transfer Learning
- PyTorch Transfer Learning Tutorial

CNN Publication References

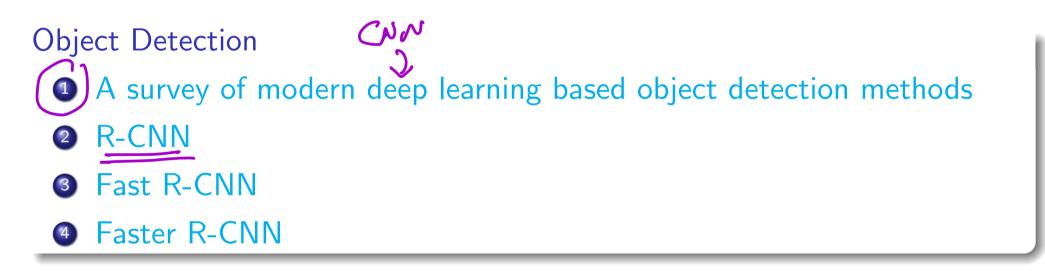
CNN surveys

- Convolutional Neural Networks: A comprehensive survey, 2019
- A survey of Convolutional Neural Networks: Analysis, Applications, and Prospects, 2021

CNN Archs

- GoogLeNet
- ② Top models on ImageNet
- ③ ResNet ILSVRC paper

Object Detection and Image Segmentation References



Mid Course Survey

Mid-course Survey Results

Learnings from the Mini-Project - Breakout Session!

Discuss this rest Lecture

Breakout and Discuss - Peer Learning (5 mins)

Breakout and discuss in your zoom room - What were your key learnings from the mini-project? What strategies worked and what didn't? How much did hyper-param tuning play a role in the result? Did you get to build your intuition with the models you tested?

Transfer learning in CNN (a.k.a how to not reinvent the wheel with CNN training!)

- Transfer learning in CNN (a.k.a how to not reinvent the wheel with CNN training!)
- Pre-trained models

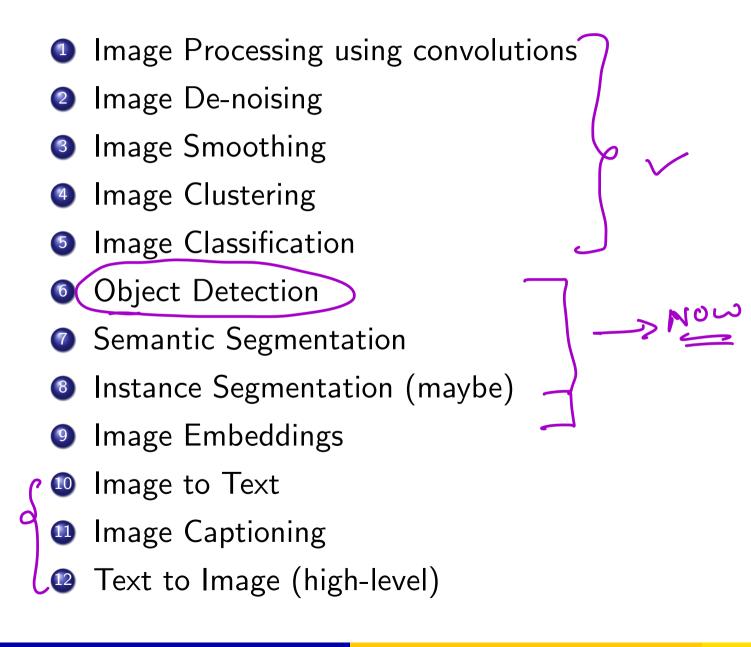
- Transfer learning in CNN (a.k.a how to not reinvent the wheel with CNN training!)
- Pre-trained models
- Strategies to transfer the learning from a pre-trained model to a new data set

- Transfer learning in CNN (a.k.a how to not reinvent the wheel with CNN training!)
- Pre-trained models
- Strategies to transfer the learning from a pre-trained model to a new data set
- PyTorch Tutorial on Transfer Learning

- Transfer learning in CNN (a.k.a how to not reinvent the wheel with CNN training!)
- Pre-trained models
- Strategies to transfer the learning from a pre-trained model to a new data set
- PyTorch Tutorial on Transfer Learning
- How many of us tried out a transfer learning model for Mini-Project? Thoughts??

- Introduction to Object Detection and Instance Segmentation
- Models and Architectures for Object Detection and Instance Segmentation

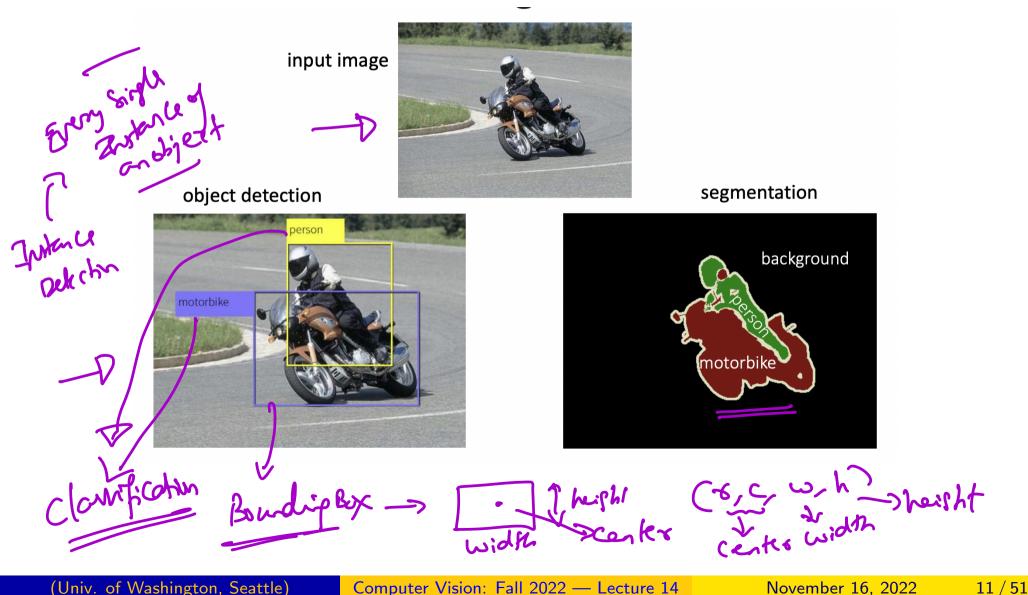
Computer Vision Topics



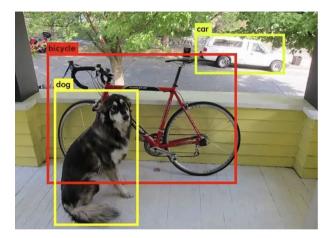
Object and Instance Detection Motivation

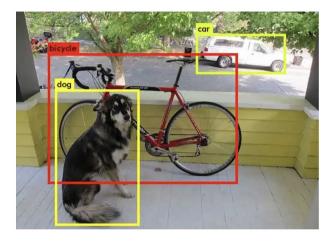
Traffic Instance Segmentation

Object Detection vs Image Segmentation

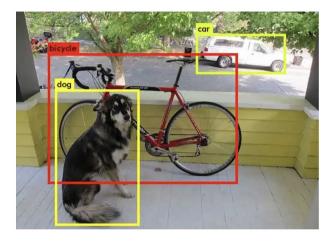


Computer Vision: Fall 2022 — Lecture 14

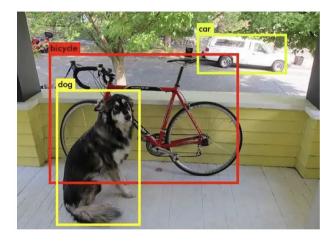




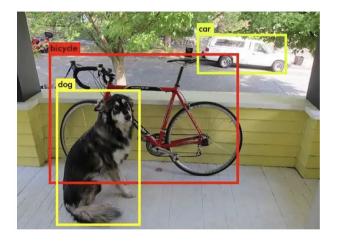
- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones



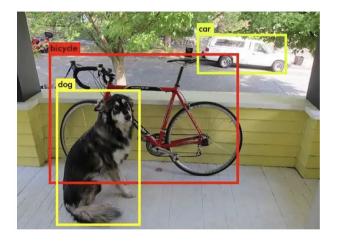
- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Searly detectors: Low accuracy and cumbersome/time-consuming



- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Series and cumbersome/time-consuming
- CNN changed the landscape Better Accuracy, faster train, generalizability

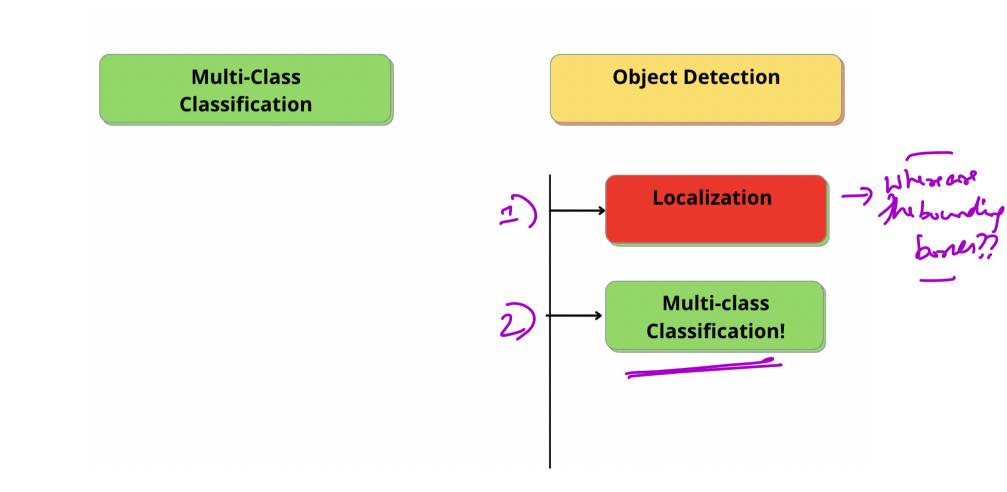


- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Searly detectors: Low accuracy and cumbersome/time-consuming
- ONN changed the landscape Better Accuracy, faster train, generalizability
- Solution AlexNet (2012) First CNN archs to be applied to Obj. Detection

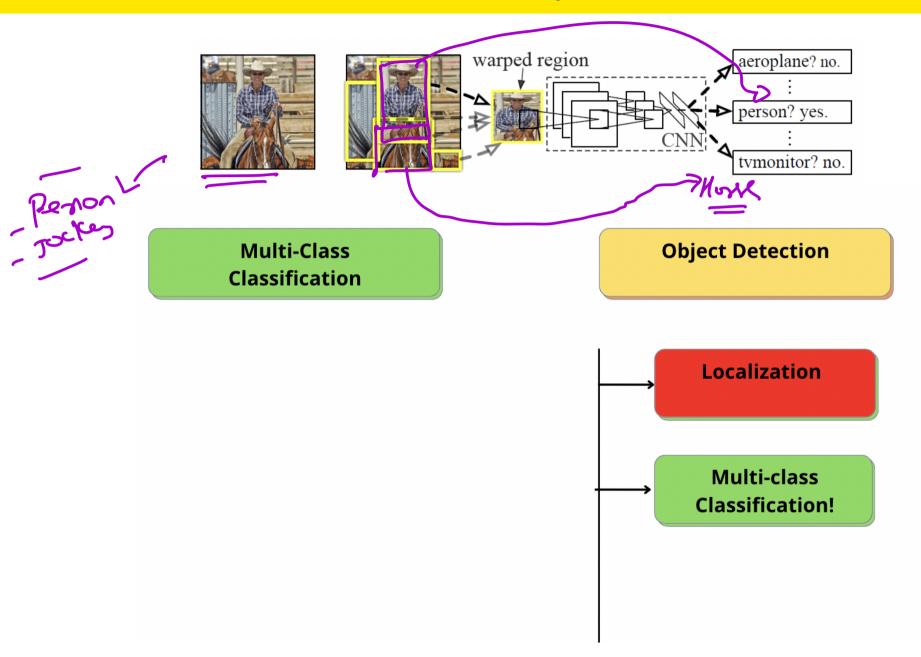


- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Searly detectors: Low accuracy and cumbersome/time-consuming
- ONN changed the landscape Better Accuracy, faster train, generalizability
- AlexNet (2012) First CNN archs to be applied to Obj. Detection
- Real world application: Self-driving cars

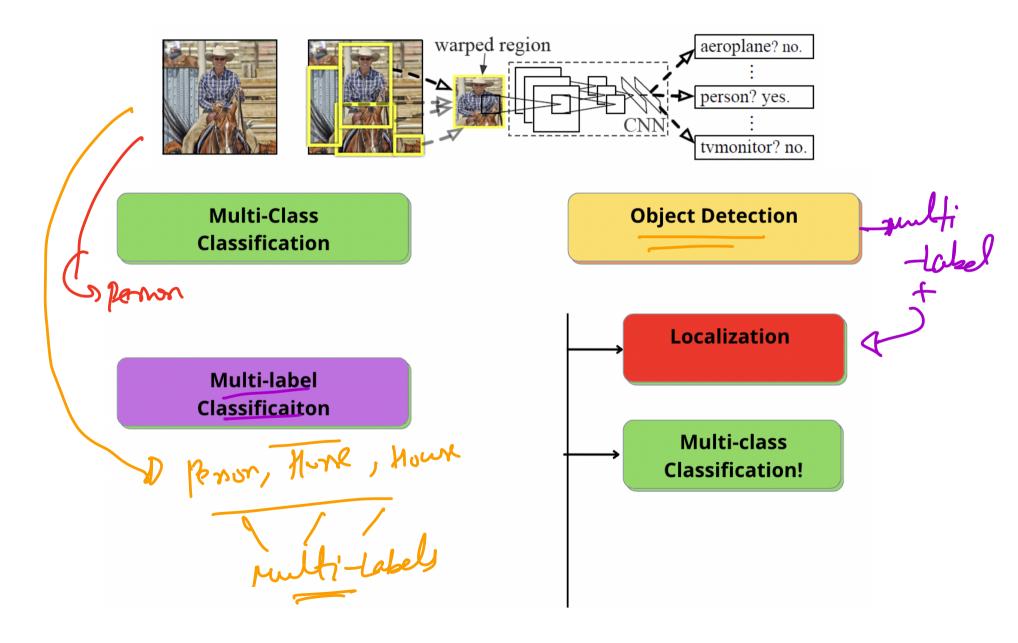
Multi-class Classification vs Object Detection



Multi-label Classification vs Object Detection

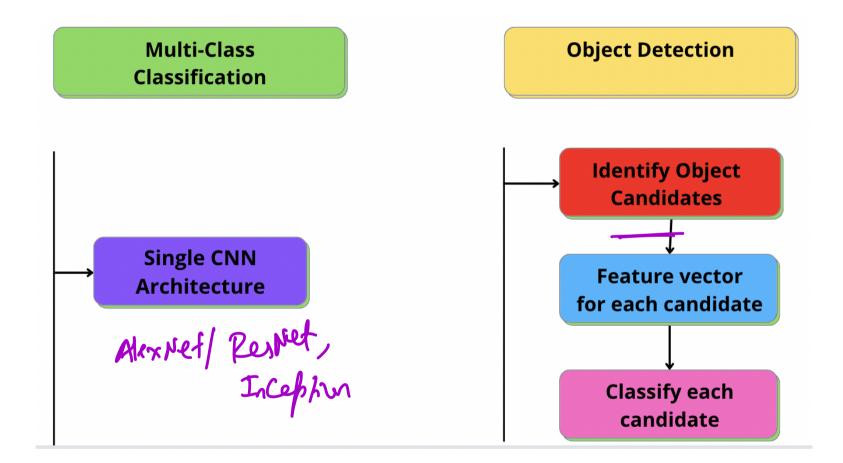


Multi-class Classification vs Object Detection

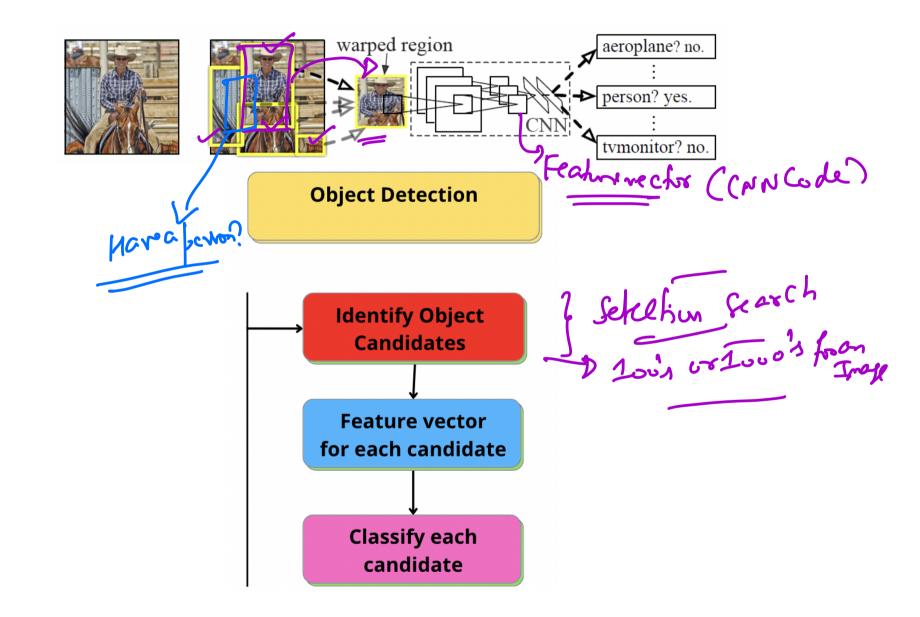


November 16, 2022

Multi-class Classification vs Object Detection

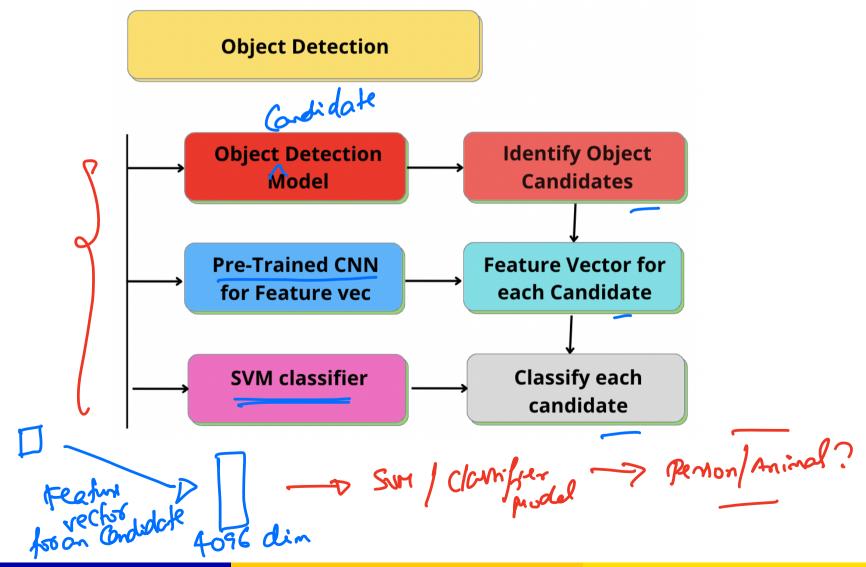


Object Detection Intuition



(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 14 November 16, 2022 17 / 51

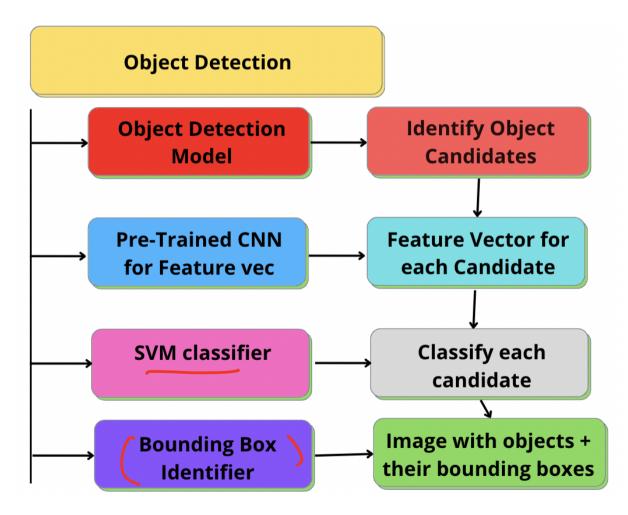
Object Detection Model Framework



(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 14

Object Detection Model Framework



First CNN Model for Object Detection: R-CNN model

CNN

4

tvmonitor? no.

First CNN Model for Object Detection: R-CNN model



Object Detection Dimensions

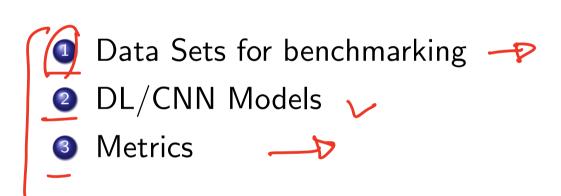
Image Net for Hulti-class

Data Sets for benchmarking

Object Detection Dimensions

Data Sets for benchmarking
DL/CNN Models (F-CNN, Fert R-CNN, JC)

Object Detection Dimensions

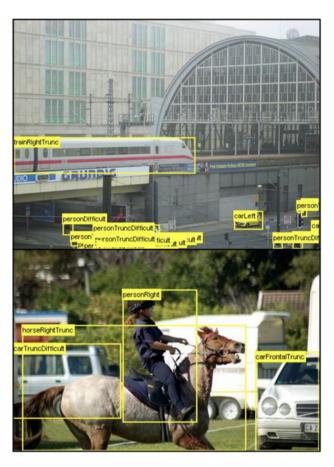


Let's take a look at the Data Sets

Let's take a look at the Data Sets

	Dataset	Classes	Train			Validation			Test
			Images	Objects	Objects/Image	Images	Objects	Objects/Image	
1.	PASCAL VOC 12	20	5,717	13,609	2.38	5,823	13,841	2.37	10,991
	MS-COCO	80	118,287	860,001	7.27	5,000	36,781	7.35	40,670
	ILSVRC	200	456,567	478,807	1.05	20,121	55,501	2.76	40,152
	OpenImage	600 🗸	1,743,042	14,610,229	8.38	41,620	204,621	4.92	125,436
L M	ucrosoft	Google	_ (la		zsetsfor Dekchn	m) #	inoge	<pre>> foral < #ime</pre>	yesinter

Pascal Data Set



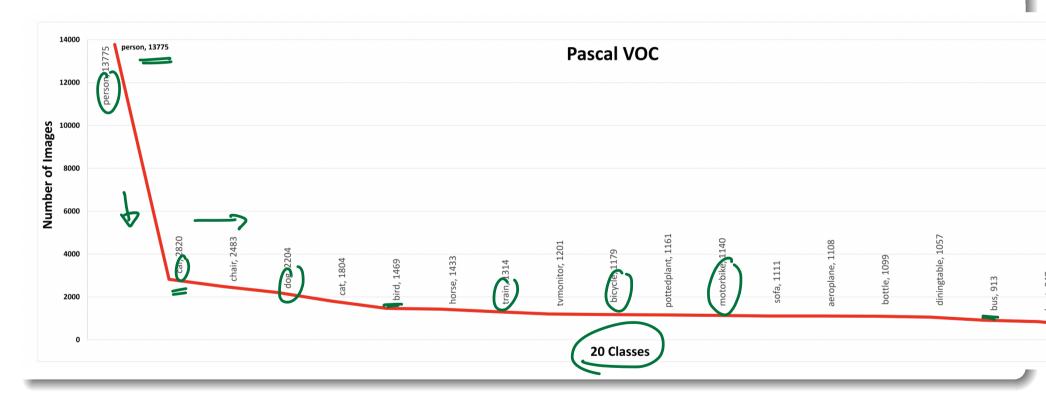
(a) PASCAL VOC 12

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 14

November 16, 2022

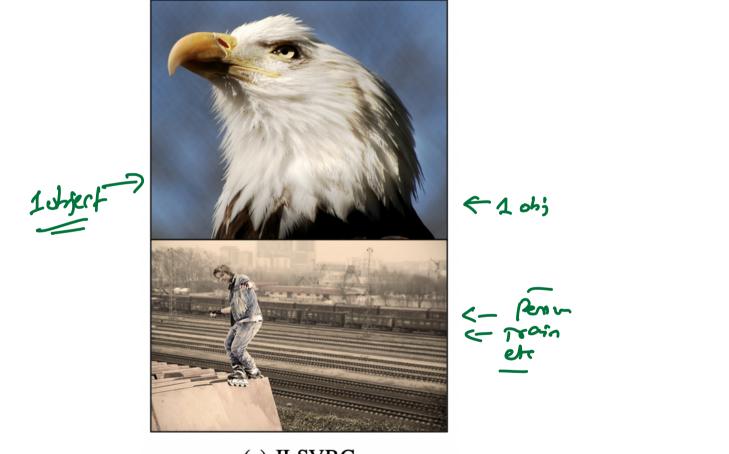
Pascal Data Set



Let's take a look at the Data Sets

Γ	Dataset	Classes	Train			Validation			Test
			Images	Objects	Objects/Image	Images	Objects	Objects/Image	
	PASCAL VOC 12	20	5,717	13,609	2.38	5,823	13,841	2.37	10,991
	MS-COCO	80	118,287	860,001	7.27	5,000	36,781	7.35	40,670
	ILSVRC	200	456,567	478,807	1.05	20,121	55,501	2.76	40,152
	OpenImage	600	1,743,042	14,610,229	8.38	41,620	204,621	4.92	125,436

ILSVRC Data Set

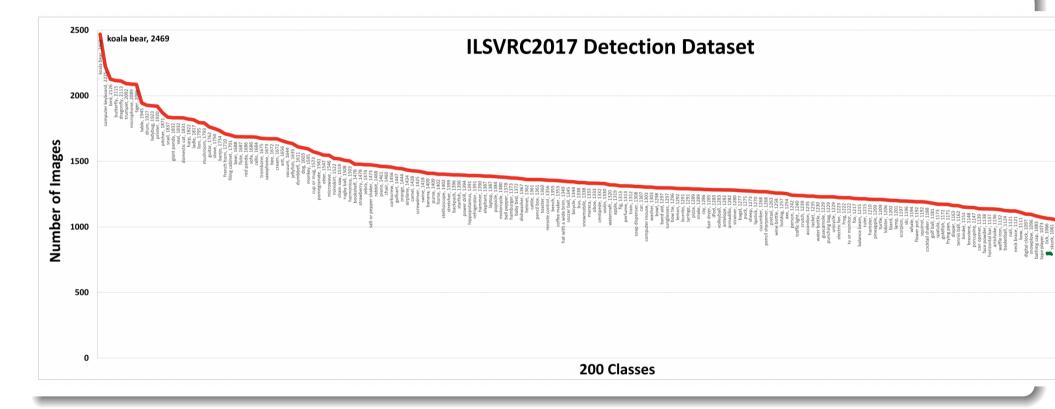


(c) ILSVRC

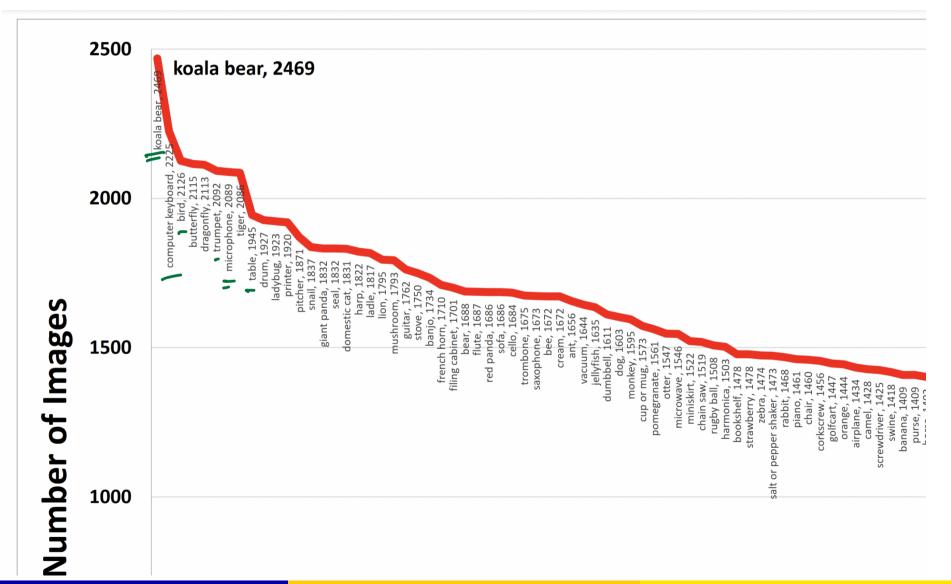
(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 14 Novemb

November 16, 2022

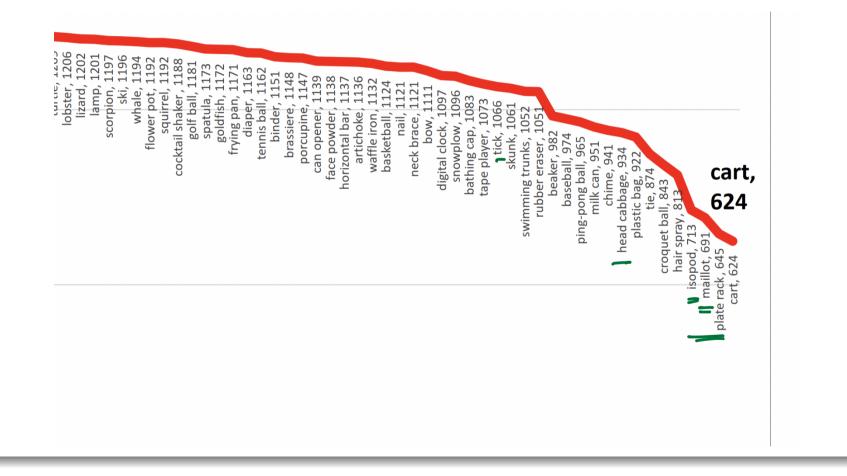
ILSVRC Data Set



ILSVRC Data Set (Zoomed In)



ILSVRC Data Set (Zoomed In)



22 31/51

Let's take a look at the Data Sets

Dataset	Classes	Train			Validation			Test
		Images	Objects	Objects/Image	Images	Objects	Objects/Image	
PASCAL VOC 12	20	5,717	13,609	2.38	5,823	13,841	2.37	10,991
MS-COCO	80	118,287	860,001	7.27	5,000	36,781	7.35	40,670
ILSVRC	200	456,567	478,807	7.27 1.05 2	20,121	55,501	2.76	40,152
OpenImage	600	1,743,042	14,610,229	8.38	41,620	204,621	4.92	125,436

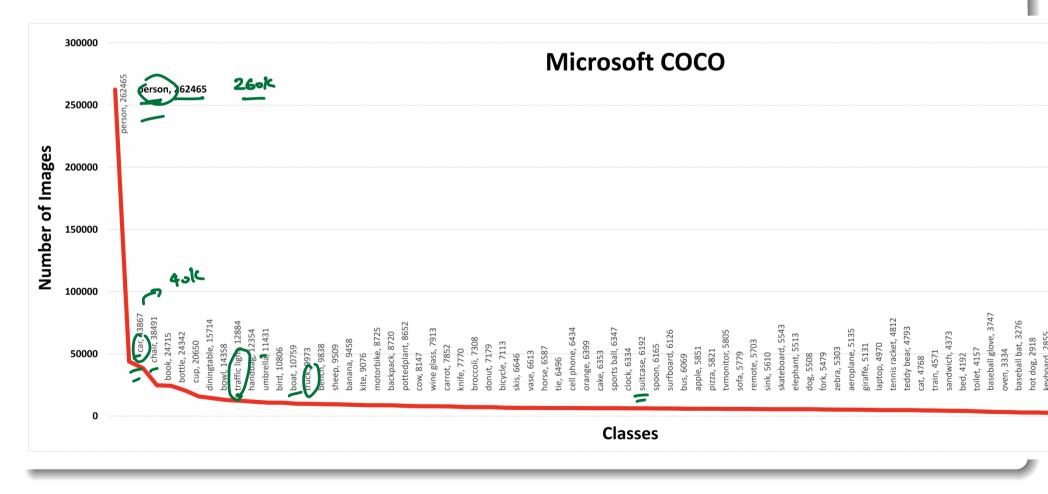
MS Coco Data Set

(b) MS-COCO

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 14

November 16, 2022

MS Coco Data Set

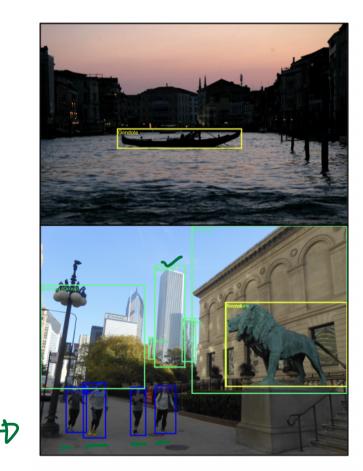


Computer Vision: Fall 2022 — Lecture 14

Let's take a look at the Data Sets

Dataset	Classes	Train			Validation			Test
		Images	Objects	Objects/Image	Images	Objects	Objects/Image	
PASCAL VOC 12	20	5,717	13,609	2.38	5,823	13,841	2.37	10,991
MS-COCO	80	118,287	860,001	7.27	5,000	36,781	7.35	40,670
ILSVRC	200	456,567	478,807	1.05	20,121	55,501	2.76	40,152
OpenImage	600	1,743,042	14,610,229	8.38	41,620	204,621	4.92	125,436
		, ,	, , ,		,			,

OpenImage Data Set



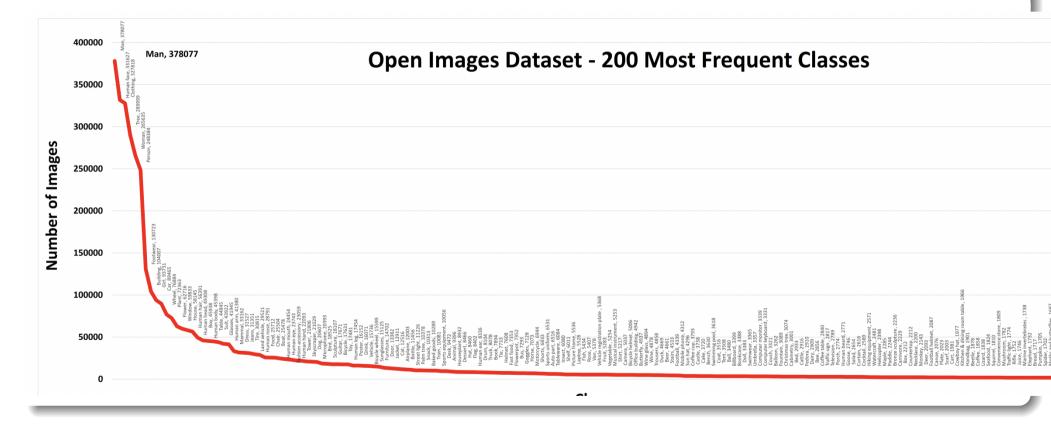
(d) OpenImage

(Univ. of Washington, Seattle)

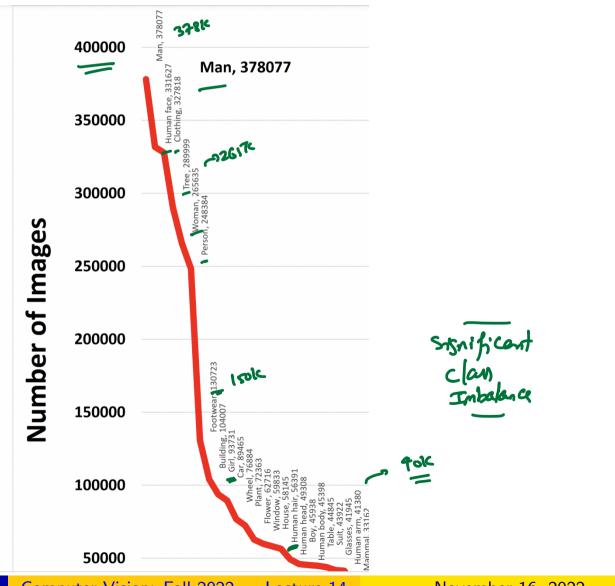
Computer Vision: Fall 2022 — Lecture 14

November 16, 2022

OpenImage Data Set



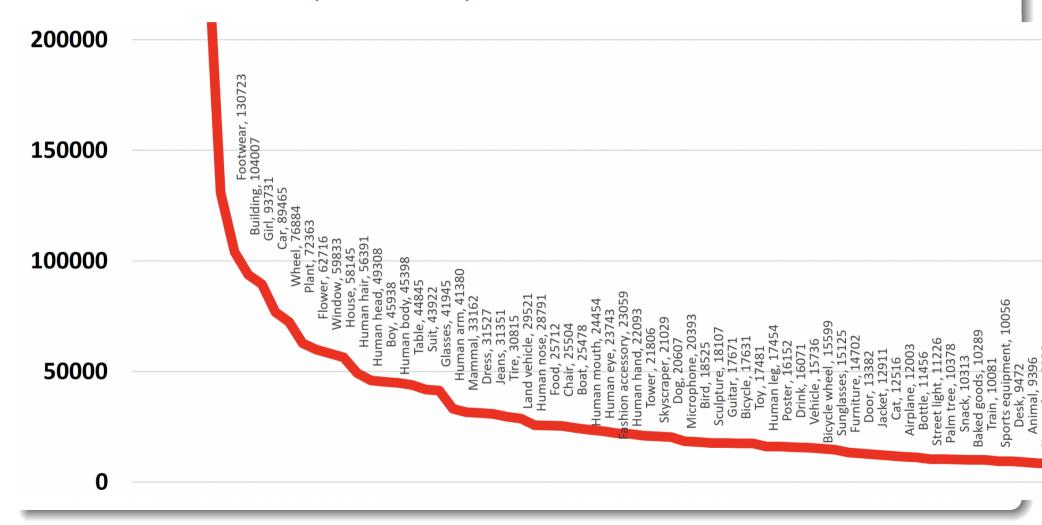
OpenImage Data Set (Zoomed In)



(Univ. of Washington, Seattle)

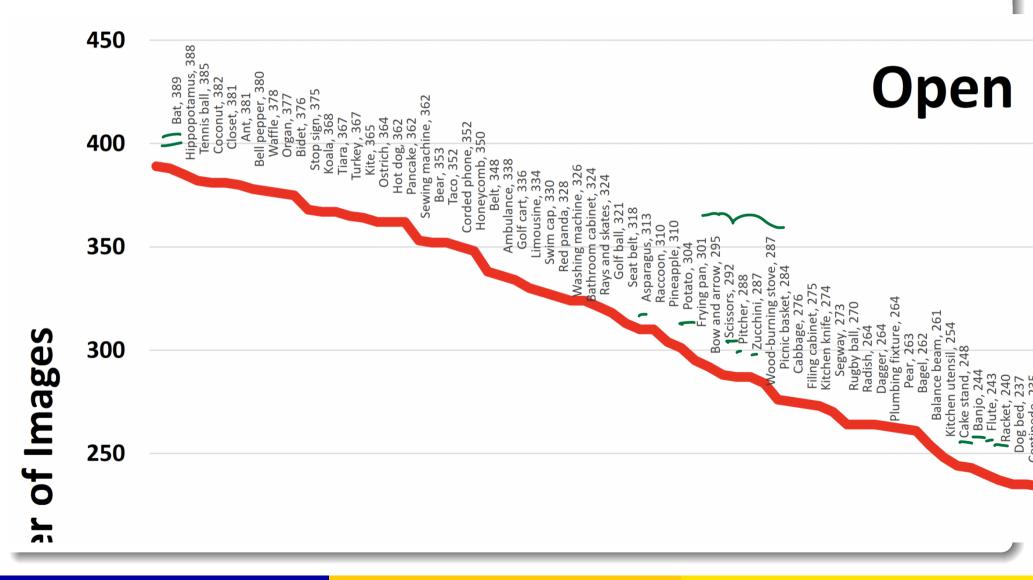
Computer Vision: Fall 2022 — Lecture 14

OpenImage Data Set (Zoomed In)



Computer Vision: Fall 2022 — Lecture 14

OpenImage Data Set (Zoomed In)



(Univ. of Washington, Seattle)

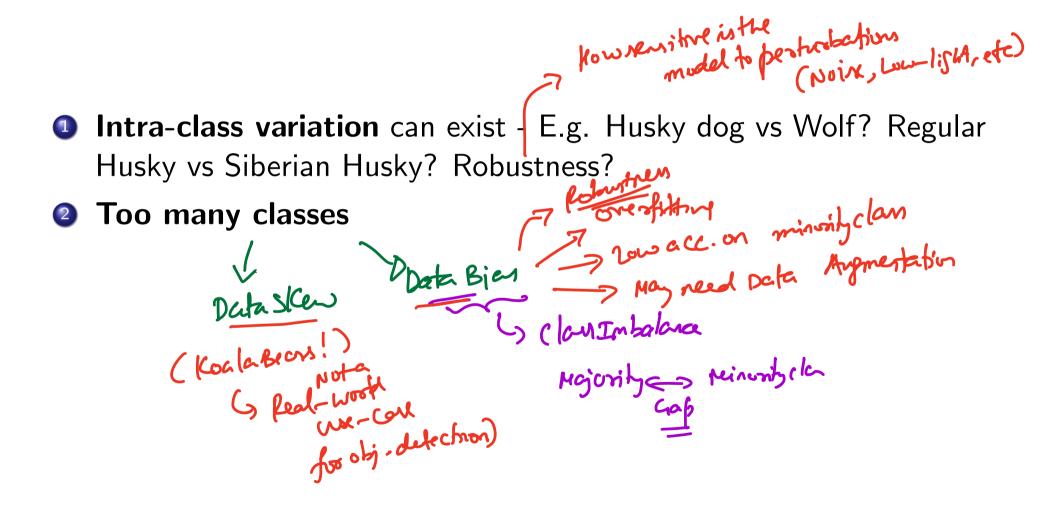
Computer Vision: Fall 2022 — Lecture 14

November 16, 2022 40 / 51

What does the data sets deep-dive show us?

Intra-class variation can exist - E.g. Husky dog vs Wolf? Regular Husky vs Siberian Husky? Robustness?

What does the data sets deep-dive show us?



What does the data sets deep-dive show us?

- Intra-class variation can exist E.g. Husky dog vs Wolf? Regular Husky vs Siberian Husky? Robustness?
- 2 Too many classes

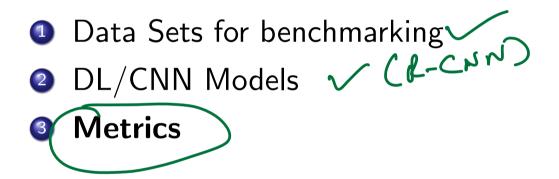
Efficiency of object detection - Esp. with on-device inference

Bediction or Procens prediction

What's the issue from a machine learning stand point with having thousands of classes to detect in *object detection* on images? (more than one answer may apply)

- If the number of examples per class has a high variance, this can lead to model biasing towards the more frequent class being detected in images
- ② If the there are not enough examples for a class, the model may not / have accurate predictions for that class
- S The model may overfit on the more frequent class as compared to the less frequent class
 - Robustness issues of the model to small data perturbations can get exacerbated in this scenario

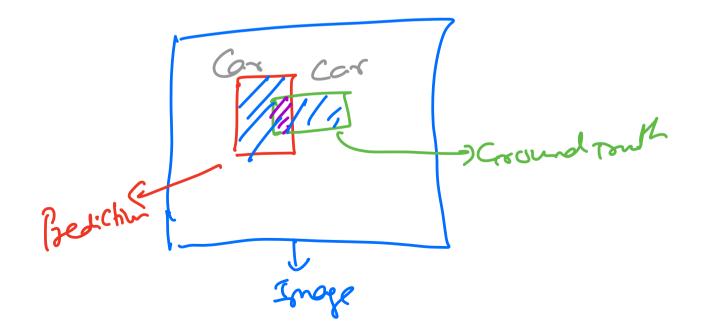
Object Detection Dimensions



Metrics for Classification

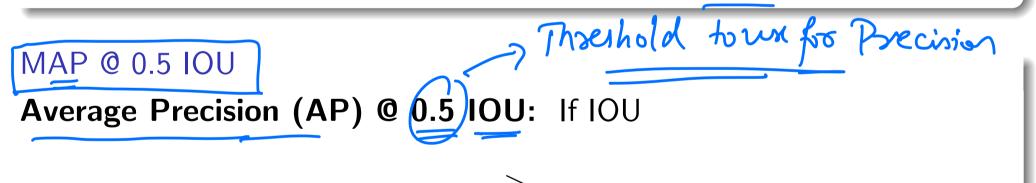
IOU

Intersection over Union: Is the ratio of the area of the *intersection* between the predicted bounding box and the ground truth bounding box **over** the union of the area between the predicted bounding box and the ground truth bounding box



IOU

Intersection over Union: Is the ratio of the area of the *intersection* between the predicted bounding box and the ground truth bounding box **over** the union of the area between the predicted bounding box and the ground truth bounding box

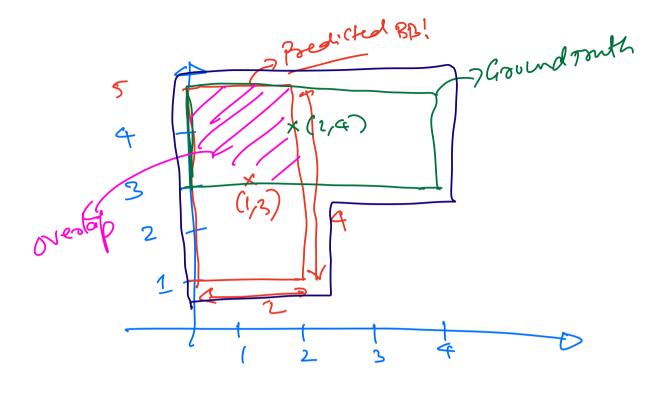


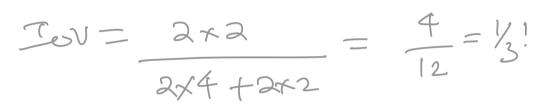
0.5 across examples of a given class, count the precision as 1, else 0. Average Precision is the average of all the precisions in a given class.

ICE #2

IOU computation

Let's say we have an image as above. The model predicts a horse centered at coordinates (1,3) with a bounding box around it of width 2 and height of 4. The ground truth predicts a horse centered at coordinates (2,4) with a bounding box around it of width 4 and height of 2. What's the IOU ratio between the model's prediction and the ground truth? **Hint:** Plot the coordinates and bounding box on paper and then compute the IOU!





ICE #3

AP @ 0.5 IOU

So we want to compute the AP or Average Precision @ 0.5 IOU, a unique metric that the R - CNN paper came up with as a unique metric for the Object Detection problem. Suppose we want to measure the AP for a given class - Say the class of horses. For every candidate object in the horse class (note there could be multiple candidates per image!), we look at the IOU and threshold it compute precision and subsequently the average precision. Let's say the IOU for the horse class over 10 candidate objects (for which the model predicted horse) looks as follows: $\{0.7, 0.3, 0, 0.51, 0.49, 0.2, 0.8, 0.6, 0, 0.57\}$ What's the AP @ 0.5 IOU in this scenario? 0.7~0.5=>1 0.3<0.5=>0

- 0.3
- **2** 0.4
- 0.5

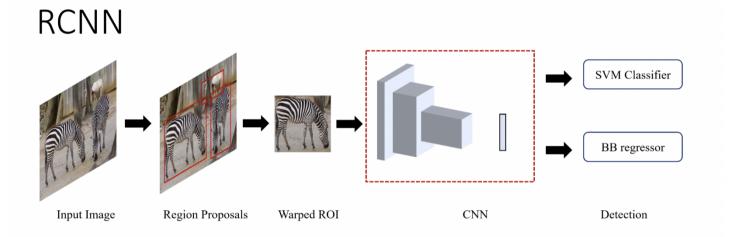
Discuss Takeaways (5 mins)

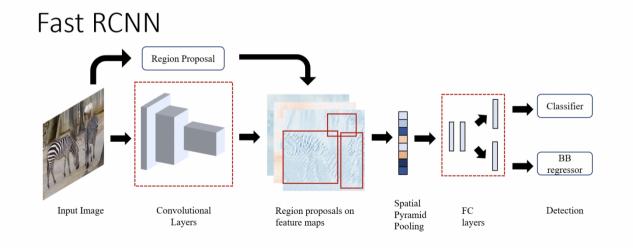
From today's lecture in your zoom group

Next Class

- Object Detection Recap
- R-CNN variants Fast and Faster R-CNN
- Results and Benchmarking on the data sets
- Image Segmentation (Maybe)

R-CNN variants



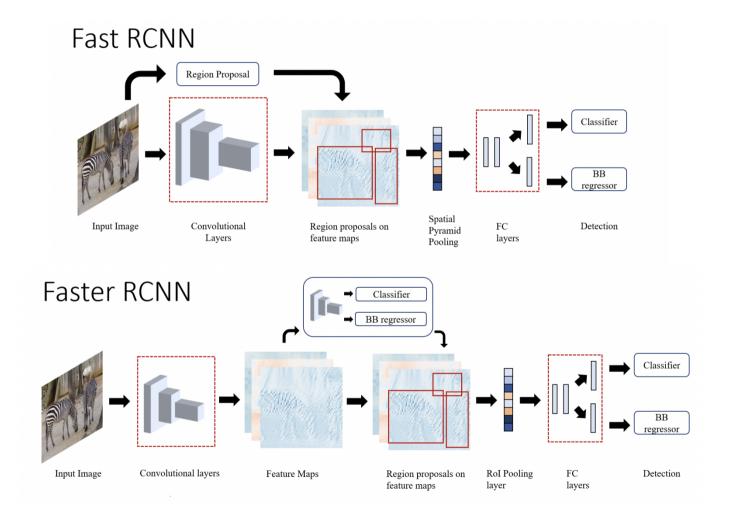


(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 14

November 16, 2022

R-CNN variants



(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 14

November 16, 2022

Results for Object Detection

		5 11	a:		1.5
Model	Year	Backbone	Size	AP _[0.5:0.95]	AP _{0.5}
R-CNN*	2014	AlexNet	224	-	58.50%
SPP-Net*	2015	ZF-5	Variable	-	59.20%
Fast R-CNN*	2015	VGG-16	Variable	-	65.70%
Faster R-CNN*	2016	VGG-16	600	-	67.00%
R-FCN	2016	ResNet-101	600	31.50%	53.20%
FPN	2017	ResNet-101	800	36.20%	59.10%
Mask R-CNN	2018	ResNeXt-101-FPN	800	39.80%	62.30%
DetectoRS	2020	ResNeXt-101	1333	53.30%	71.60%
YOLO*	2015	(Modified) GoogLeNet	448	-	57.90%
SSD	2016	VGG-16	300	23.20%	41.20%
YOLOv2	2016	DarkNet-19	352	21.60%	44.00%
RetinaNet	2018	ResNet-101-FPN	400	31.90%	49.50%
YOLOv3	2018	DarkNet-53	320	28.20%	51.50%
CenterNet	2019	Hourglass-104	512	42.10%	61.10%
EfficientDet-D2	2020	Efficient-B2	768	43.00%	62.30%
YOLOv4	2020	CSPDarkNet-53	512	43.00%	64.90%
Swin-L	2021	HTC++	-	57.70%	-

^aModels marked with * are compared on PASCAL VOC 2012, while others on MS COCO.Rows colored gray are real-time detectors