Computer Vision: Fall 2022 — Lecture 15 Dr. Karthik Mohan

Univ. of Washington, Seattle

November 19, 2022

1/42

Generic ML/DL

- Good Book for Machine Learning Concepts
- ② Deep Learning Reference

CNN

- Convolutional Neural Networks for Visual Recognition
- ② Convolutional Neural Net Tutorial
- ONN Transfer Learning
- PyTorch Transfer Learning Tutorial

CNN Publication References

CNN surveys

- Convolutional Neural Networks: A comprehensive survey, 2019
- A survey of Convolutional Neural Networks: Analysis, Applications, and Prospects, 2021

CNN Archs

- GoogLeNet
- 2 Top models on ImageNet
- ③ ResNet ILSVRC paper

Object Detection and Image Segmentation References

) product of UN -ALE FARMANI

Learnings from the Mini-Project - Breakout Session!

Breakout and Discuss - Peer Learning (5 mins)

Breakout and discuss in your zoom room - What were your key learnings from the mini-project? What strategies worked and what didn't? How much did hyper-param tuning play a role in the result? Did you get to build your intuition with the models you tested?

Introduction to Object Detection and Instance Segmentation
 R-CNN model and metrics for Object Detection
 A data suff

- Object Detection Recap //
- R-CNN variants Fast and Faster R-CNN
- YOLO Single Stage Object Detection
- Results and Benchmarking on the data sets

7 / 42

Object Detection Recap

- R-CNN variant Fast R-CNN
- YOLO Single Stage Object Detection
- Results and Benchmarking on the data sets

Object Detection vs Image Segmentation

input image

object detection

(cx, c, w, h), clay

background

segmentation

9/42

Has been an uphill task until 2012

- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones

- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Series and cumbersome/time-consuming

- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Searly detectors: Low accuracy and cumbersome/time-consuming
- ONN changed the landscape Better Accuracy, faster train, generalizability

- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Searly detectors: Low accuracy and cumbersome/time-consuming
- ONN changed the landscape Better Accuracy, faster train, generalizability
- Solution AlexNet (2012) First CNN archs to be applied to Obj. Detection

- Has been an uphill task until 2012
- ② Early detectors for objects Ensemble of hand-crafted ones
- Searly detectors: Low accuracy and cumbersome/time-consuming
- ONN changed the landscape Better Accuracy, faster train, generalizability
- AlexNet (2012) First CNN archs to be applied to Obj. Detection
- **OREAL WORLD APPLICATION:** Self-driving cars

Multi-class Classification vs Object Detection

Multi-label Classification vs Object Detection

Multi-class Classification vs Object Detection

13/42

Multi-class Classification vs Object Detection

Object Detection Intuition

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 15 November 19, 2022 15 / 42

Object Detection Model Framework

Object Detection Model Framework

IOU

Intersection over Union: Is the ratio of the area of the *intersection* between the predicted bounding box and the ground truth bounding box **over** the union of the area between the predicted bounding box and the ground truth bounding box

7 Ground Tout

IOU

Intersection over Union: Is the ratio of the area of the *intersection* between the predicted bounding box and the ground truth bounding box **over** the union of the area between the predicted bounding box and the ground truth bounding box

MAP @ 0.5 IOU Average Precision (AP) @ 0.5 IOU: If

across examples of a given class, count the precision as 1, else 0. Average Precision is the average of all the precisions in a given class.

First CNN Model for Object Detection: R-CNN model

19/42

First CNN Model for Object Detection: R-CNN model

R-CNN: Training

20 / 42

R-CNN variant

Computer Vision: Fall 2022 — Lecture 15

November 19, 2022

Drawbacks of Two Stage Detection

R-CNN variants: a) Generate Bounding Boxes b) Classify these boxes and c) Merge bounding boxes to eliminate duplicates - 3 steps, 3 models to train!

Drawbacks of Two Stage Detection

R-CNN variants: a) Generate Bounding Boxes b) Classify these boxes and c) Merge bounding boxes to eliminate duplicates - 3 steps, 3 models to train!

Inference Time Taken: FPS can be low - E.g. even Faster R-CNN has a speed of 5 FPS at inference time
Soufr vide procenty!

Drawbacks of Two Stage Detection

- R-CNN variants: a) Generate Bounding Boxes b) Classify these boxes and c) Merge bounding boxes to eliminate duplicates 3 steps, 3 models to train!
- Inference Time Taken: FPS can be low E.g. even Faster R-CNN has a speed of 5 FPS at inference time
- Train Time: 3 separate models implies more time to train

Simplify!

What if we could simplify the detection process and also make training and inference more efficient in the process? Enter **YOLO**

- Object Detection Recap
- R-CNN variants Fast and Faster R-CNN
- YOLO Single Stage Object Detection
- Results and Benchmarking on the data sets

YOLO - Single Stage Detection

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 15

YOLO Breakdown

Computer Vision: Fall 2022 — Lecture 15

YOLO Real-time Detection

ICE #1

YOLO breakdown

YOLO implicitly divides the input into 7x7 regions and makes bounding box predictions for each of the 49 grids. How would this be different from 'explicitly' breaking up the input into 49 grids and passing each grid through an object detection method?

- It would be the same thing and give similar results
- 2 It would be different
- Surrounding context doesn't get encoded in the latter and impacts accuracy of object detection
- The explicit breakup would yield higher accuracy on the IOU metric as compared to the implicit breakup

29 / 42

- **1** Single pass
- 2 Fast

- Single pass
- 2 Fast
- Global reasoning
- More generalized representations

YOLO examples

YOLO labels

ICE #2

Label Dimensions (2 mins)

Consider a data set of Images, let's say a subset of the MS Coco data set. Let's look at 3 different but related ML problem formulations on this data set: Multi-Class Classification, Multi-Label Classification, and Object Detection (YOLO style). Let's say there are 100 classes to pick from. For object detection, assume that YOLO uses a 9x9 grid with each grid producing 3 different bounding boxes. What's the dimension of output vector for these 3 problem formulations?

unti-da multi-la

- 100, 300, and 8100
- 2 100, 100, and 9315
- I00, 8100, and 9315
- 100, 100 and 8100

 $0\cdot 2$

YOLO Bounding Box

YOLO Bounding Box 2

YOLO Loss Function - Regression!

YOLO loss function turns out to be just like a Regression Loss! Why Regression?

YOLO Loss Function - Regression!

YOLO loss function turns out to be just like a Regression Loss! Why Regression?

ICE #3

Regression (2 mins)

You want to predict the 'sharpness' of an image when the input is an image. Sharpness for this exercise is defined on a continuous scale between 0 and 1. The training data looks like {*Image*, *Sharpness*} where Image is the input and Sharpness (on a continuous scale) is the output. You devise an ingenious loss function as follows: Take the prediction \hat{y}_i of the sharpness, subtracts it from the ground truth sharpness y_i , and obtain the error, e_i . Define the loss, $L = \sum_i e_i$. You then minimize the loss as you hope a good model for sharpness would give zero errors and hence a close to zero loss. Optimizing the loss function:

- Will help you train a good model for sharpness
- Is a good idea but may have to watch out for overfitting
- Would not be a good idea

Gould result in a model with overall zero error but poor individual predictions
 (Univ. of Washington, Seattle)
 Computer Vision: Fall 2022 — Lecture 15
 November 19, 2022

36 / 42

YOLO Loss Function

$$\mathcal{L} = \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{obj} [(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2] \\ + \lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{obj} \left[\left(\sqrt{w_i} - \sqrt{\widehat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\widehat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{obj} \left(C_i - \hat{C}_i \right)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{I}_{ij}^{noobj} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{I}_i^{obj} \sum_{c \in classes} (p_i(c) - \hat{p}_i(c))^2$$

- Object Detection Recap
- P-CNN variants Fast and Faster R-CNN
- YOLO Single Stage Object Detection
- **O** Results and Benchmarking on the data sets

Data Sets

Dataset	Classes	Train			Validation			Test
		Images	Objects	Objects/Image	Images	Objects	Objects/Image	
PASCAL VOC 12	20	5,717	13,609	2.38	5,823	13,841	2.37	10,991
MS-COCO	80	118,287	860,001	7.27	5,000	36,781	7.35	40,670
ILSVRC	200	456,567	478,807	1.05	20,121	55,501	2.76	40,152
OpenImage	600	1,743,042	14,610,229	8.38	41,620	204,621	4.92	125,436

Results for Object Detection

Model	Year	Backbone	Size	AP _[0.5:0.95]	AP _{0.5}	FPS			
R-CNN*	2014	AlexNet	224	-	58.50%	~ 0.02			
SPP-Net*	2015	ZF-5	Variable	-	59.20%	~0.23			
Fast R-CNN*	2015	VGG-16	Variable	-	65.70%	~ 0.43			
Faster R-CNN*	2016	VGG-16	600	-	67.00% C	5			
R-FCN	2016	ResNet-101	600	31.50%	53.20%	~3			
FPN	2017	ResNet-101	800	36.20%	59.10%	5			
Mask R-CNN	2018	ResNeXt-101-FPN	800	39.80%	62.30%	5			
DetectoRS	2020	ResNeXt-101	1333	53.30%	71.60%	~4/1			
YOLO*	2015	(Modified) GoogLeNet	448	-	57.90%	45			
SSD	2016	VGG-10	300	23.20%	41.20%	40			
YOLOv2	2016	DarkNet-19	352	21.60%	44.00%	81			
RetinaNet	2018	ResNet-101-FPN	400	31.90%	49.50%	12			
YOLOv3	2018	DarkNet-53	320	28.20%	51.50%	45			
CenterNet	2019	Hourglass-104	512	42.10%	61.10%	7.8			
EfficientDet-D2	2020	Efficient-B2	768	43.00%	62.30%	41.7			
YOLOv4	2020	CSPDarkNet-53	512	43.00%	64.90%	31			
Swin-L	2021	HTC++	-	57.70%	-				

^aModels marked with * are compared on PASCAL VOC 2012, while others on MS COCO.Rows colored gray are real-time detectors (>30 FPS).

Discuss Takeaways (5 mins)

From today's lecture in your zoom group

- Newer Variants of YOLO
- Object Detection vs Instance Segmentation
- Image Captioning Models