Computer Vision: Fall 2022 - Lecture 3
 Dr. Karthik Mohan

Univ. of Washington, Seattle
October 6, 2022

Weekly Logistics

	Day	Timings	Class type
Lecture 1 (In-person)	T	$4 \mathrm{pm}-6 \mathrm{pm}$	(In-person)
Lecture 2	Th	$4 \mathrm{pm}-6 \mathrm{pm}$	Zoom
Office Hours Karthik	T	$6-6: 30 \mathrm{pm}$	In-person/Zoom
Calendly 15 min Karthik	October		Zoom
Office Hours Ayush	Fri	$5-6 \mathrm{pm}$	Zoom
Quiz Section Ayush	Mon	$5-6 \mathrm{pm}$	Zoom

References for Lecture

(1) Image Compression with SVD
(2) Wikipedia on Image Convolutions
(3) Convolution Playground
(9) Deep Learning TextBook by Yoshua Bengio et al \} Future

Assessments Breakdown

Today

1, SVD and Image applications $\}$ Modelip we tores
(2) Matrix Arithmetic Refresher
(3) Convolutions and Image Processing
(4) Introduction to clustering and kMeans \}

Notebook on SVD

ICE \#1

Matrix Arithmetic
Let $X=\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10\end{array}\right]$ Then the reduced SVD of X with $k=2$ and
rounded to 1 decimal place is given by:

```
\triangleright print(np.round(Utilde,1))
    print(np.round(Vtilde,1))
    print(np.round(np.diag(Stilde),1))
[81] \checkmark 0.5s
[[-0.2 1. ]
    [-0.5 0. ]
    [-0.8 -0.3]]
[[[-0.5 -0.6 -0.7]
    [-0.8 0. 0.6]]
    [[17.4 0. ]
    [ 0. 0.9]]
```


ICE \#1

Matrix Arithmetic

Which of the following is true for a) The dot product of the first and second column of the given Utilde and b) The dot product of the first and second row of Vtilde
(1) equals 0 and equals 0
(2) close to 0 and close to 0
(3) equals 0 and close to 0
(4) close to 0 and equals 0

ICE \#2

Matrix Rank and Singular Factors
Let $X=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$. Notice we replaced the $(2,2)$ element with 9
instead of 10 from the previous ICE. Which of the following is true of X (you can say this even without having to compute the SVD of X):
(1) The matrix rank of X is 2 and the number of non-zero singular values of X is 2
(2) The matrix rank of X is 3 and the number of non-zero singular values of X is 3
(3) The matrix rank of X is 3 and the number of non-zero singular values of X is 2
(4) The matrix rank of X is 2 and the number of non-zero singular values of X is 3

Two ways to multiply Matrices

1) Ufilde $S_{\text {tilde }} V_{\text {fill }}$

2)

Computer Vision: Fall 2022 - Lecture 3

$$
\begin{aligned}
& \times\left[\binom{7}{9} \begin{array}{c}
8 \\
10
\end{array}\right] \\
& =\left[7 x\left[\frac{1}{3}\right]+9 \times\left[\frac{2}{4}\right]\right. \\
& \left.\cup 8 \times\left[\begin{array}{l}
1 \\
3
\end{array}\right]+10 \times\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right] \\
& x=\left[\begin{array}{lllll}
U_{1} & U_{2} & U_{3} & \cdots & U_{n}
\end{array}\right] \times\left[\begin{array}{llll}
V_{1} & V_{2} & \ldots & V_{m}
\end{array}\right] \\
& x=\left[\begin{array}{llll}
U V_{1} & U V_{2} & U V_{3} & \ldots
\end{array}\right] \\
& V_{1} V_{11}+V_{2} V_{22}+V_{3} V_{33}+\cdots
\end{aligned}
$$

ICE \#3

Matrix multiplication
Let $X=\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$ and $Y=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$. Let $Z=X Y$. Note that
$Z=\left[X Y_{1} X Y_{2}\right]$. What is Z_{2} here?
(1) $[11,32]$
(2) $[32,10]$
(3) $[10,32]$
(4) $[11,10,32]$

Matrix Arithmetic

How does SVD multiply translate to additive decomposition?

Rank-1 matron

Eigen Faces

Inage thatin ref, as a vector

Eigen Faces

Eigen Faces

Understanding Matrix Math behind Eigen Faces

SVD and PCA
\rightarrow Principal Component Analysis (Statistics)

Assignment 1: Data compression using SVD

(1) Given an image I-Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix

Assignment 1: Data compression using SVD

(1) Given an image I - Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
(2) Compute SVD of R, G, B - So 3 separate SVDs

Assignment 1: Data compression using SVD

(1) Given an image I - Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
(2) Compute SVD of R, G, B - So 3 separate SVDs
(3) Pick a \widehat{k} for reduced SVD and compute the reduced SVD factors for R,G,B

Assignment 1: Data compression using SVD

(1) Given an image I - Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
(2) Compute SVD of R, G, B - So 3 separate SVDs
(3) Pick a k for reduced SVD and compute the reduced SVD factors for R,G,B
(4) Compute the reconstructed $\tilde{R}, \tilde{G}, \tilde{B}$ from the reduced SVD factors of each of the matrices

Assignment 1: Data compression using SVD

(1) Given an image I - Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
(2) Compute SVD of R, G, B - So 3 separate SVDs
(3) Pick a k for reduced SVD and compute the reduced SVD factors for R,G,B
(9) Compute the reconstructed $\tilde{R}, \tilde{G}, \tilde{B}$ from the reduced SVD factors of each of the matrices
(5) Use $\tilde{R}, \tilde{G}, \tilde{B}$ to reconstruct the image from compression.

Assignment 1: Data compression using SVD

(1) Given an image I - Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
(2) Compute SVD of R, G, B - So 3 separate SVDs
(3) Pick a k for reduced SVD and compute the reduced SVD factors for R,G,B
(9) Compute the reconstructed $\tilde{R}, \tilde{G}, \tilde{B}$ from the reduced SVD factors of each of the matrices
(5) Use $\tilde{R}, \tilde{G}, \tilde{B}$ to reconstruct the image from compression.
(0) Plot the reconstructed images for at least 3 different compression factors (e.g. 2, 5, 10).

Next Topic: Image Processing with Convolutions

What is a convolution?

Convolution

Mathematical operation of sliding a convolution matrix (or kernel) across an input matrix. As the sliding happens, the window of the input matrix gets averaged by the convolution matrix to get a scalar. The scalar is added to the output matrix.

Blurring an Image
oot-producd

Box Blur Convolution

Box Blur

Applying Box Blur On An Image.

ICE \#4

Box Blur
Let $X=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ be the input image. Use the $\overparen{2 \times 2 \text { box blur to }}$ convolve against X. What is the output matrix look like?
(1) $\left[\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right]$
(2) $\left[\begin{array}{ll}3 & 5 \\ 8 & 9\end{array}\right]$
(3) $\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$
(4) $\left[\begin{array}{ll}3 & 4 \\ 6 & 7\end{array}\right]$

Edge Detection Kernel

Edge Detected

Edge Detection Kernel

Edge detection Kernel

Laplacian Edge detection
$C=\left[\begin{array}{ccc}0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0\end{array}\right]$. Then C is called the Laplacian edge detection kernel ardidientifies edges in images. This is one of the ways to produce edges.

Sobel Edge detection

Original Image:

Edge Detected:

ICE \#5

What does this Kernel do?
Let $C=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. What happens when C is convolved with an image?
(1) It blurs the image
(2) It sharpens the image
(3) It finds edges in the image
(4) It leaves the image unchanged

Sharpening an Image

Original Image(Left) and Image after applying Sharpen Filter of size 3×3 (Right)

Sharpening an Image

Convolution Playground

Convolution Playground

Next Topic: Clustering of Data/Images

Big Picture

The clustering problem

$k \rightarrow \#$ Clukss

Clustering vs Classification

Difference

In the classification problem, you are given $\left(x^{i}, \chi_{i}^{i}\right)$ - I.e. both the data point i and its true label y_{i} for training purposes. Example - a flower i and its label (flower type). Whereas in clustering problem, you are just given the data points, i.e. x^{i}. However, you still want to break up the data points into clusters - where each cluster has relatively similar data points.

Digits Clustering

Clustering of data points

Clustering for News

Clustering for News

User preferences are important to learn, but can be challenging to do in practice.

- People have complicated preferences
- Topics aren't always clearly defined

Cluster 1

Use feedback to learn user preferences over topics
Cluster 4

Clustering for News

What if the labels are known? Given labeled training data

ENTERTAINMENT
SCIENCE
Can do multi-class classification methods to predict label

Clustering Basics

- In many real world contexts, there aren't clearly defined labels so we won't be able to do classification
- We will need to come up with methods that uncover structure from the (unlabeled) input data X.
- Clustering is an automatic process of trying to find related groups within the given dataset.

Clustering Basics

In their simplest form, a cluster is defined by

- The location of its center (centroid)
- Shape and size of its spread

Clustering is the process of finding these clusters and assigning each example to a particular cluster.

- $\quad x_{i}$ gets assigned $z_{i} \in[1,2, \ldots, k]$
- Usually based on closest centroid

Will define some kind of score for a clustering that determines how good the assignments are

- Based on distance of assigned examples to each cluster

Distance typically used

Euclidean Distance
Distance between two points, x_{1}, x_{1} is given by:

$$
\left\|x_{1}-x_{2}\right\|_{2}
$$

Clustering on different Data sets

Clustering is easy when distance captures the clusters

Ground Truth (not visible)

Given Data

Clustering - Hard cases

There are many clusters that are harder to learn with this setup

- Distance does not determine clusters

k-means

Algorithm $1 k$-means algorithm
1: Specify the number k of clusters to assign.
2: Randomly initialize k centroids.
3: repeat
4: expectation: Assign each point to its closest centroid.
5: maximization: Compute the new centroid (mean) of each cluster.
6: until The centroid positions do not change.

k-means Clustering

Start by choosing the initial cluster centroids

- A common default choice is to choose centroids at random
- Will see later that there are smarter ways of initializing

k-means Clustering

Assign each example to its closest cluster centroid

$$
z_{i} \leftarrow \underset{j \in[k]}{\operatorname{argmin}}| | \mu_{j}-x_{i} \|^{2}
$$

k-means Clustering

Update the centroids to be the mean of all the points assigned to that cluster.

$$
\mu_{j} \leftarrow \frac{1}{n_{j}} \sum_{i: z_{i}=j} x_{i}
$$

Computes center of mass for cluster!

k-means Clustering

Repeat Steps 1 and 2 until convergence

Will it converge? Yes! Stop when

- Cluster assignments haven't changed
- Some number of max iterations have been passed

What will it converge to?

- Global optimum
- Local optimum
- Neither

Improving kMeans?

kMeans++
Next lecture?

