Computer Vision: Fall 2022 — Lecture 3 Dr. Karthik Mohan

Univ. of Washington, Seattle

October 6, 2022

	Day	Timings	Class type
Lecture 1 (In-person)	Т	4 pm - 6 pm	(In-person)
Lecture 2	Th	4 pm - 6 pm	Zoom
Office Hours Karthik	Т	6 - 6:30 pm	In-person/Zoom
Calendly 15 min Karthik	October		Zoom
Office Hours Ayush	Fri	5-6 pm	Zoom
Quiz Section Ayush	Mon	5-6 pm	Zoom

- Image Compression with SVD
- Wikipedia on Image Convolutions
- Onvolution Playground
- Deep Learning TextBook by Yoshua Bengio et al funck

Assessments Breakdown

Today

SVD and Image applications

- Matrix Arithmetic Refresher
- Convolutions and Image Processing
- Introduction to clustering and kMeans

Notebook on SVD

ICE #1

Matrix Arithmetic

Let
$$X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$
 Then the reduced SVD of X with $k = 2$ and rounded to 1 decimal place is given by:

Matrix Arithmetic

Which of the following is true for a) The dot product of the first and second column of the given *Utilde* and b) The dot product of the first and second row of *Vtilde*

- equals 0 and equals 0
- Iclose to 0 and close to 0
- equals 0 and close to 0
- close to 0 and equals 0

ICE #2

Matrix Rank and Singular Factors

Let $X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$. Notice we replaced the (2, 2) element with 9

instead of 10 from the previous ICE. Which of the following is true of X (you can say this even without having to compute the SVD of X):

- The matrix rank of X is 2 and the number of non-zero singular values of X is 2
- The matrix rank of X is 3 and the number of non-zero singular values of X is 3
- The matrix rank of X is 3 and the number of non-zero singular values of X is 2
- The matrix rank of X is 2 and the number of non-zero singular values of X is 3

Two ways to multiply Matrices

 $\begin{pmatrix} 2 \\ 3 \\ - \end{pmatrix} \quad \begin{bmatrix} 8 \\ 10 \end{bmatrix}$ 7 4 1 $\left(\frac{2}{4}\right)$ 7x r r r r3 $8 \times \begin{pmatrix} 1 \\ 3 \end{pmatrix} + 1 \times \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ $\begin{bmatrix} U_1 & U_2 & U_3 & \cdots & U_n \end{bmatrix} \times \begin{bmatrix} \hat{V}_1 & V_2 & \cdots & V_m \end{bmatrix}$ X =U, V, + U2 V22 + U3 V33 + - -ector scalar

Matrix multiplication

Let
$$X = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$$
 and $Y = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$. Let $Z = XY$. Note that $Z = [XY_1XY_2]$. What is Z_2 here?
1 [11, 32]
2 [32, 10]
3 [10, 32]
4 [11, 10, 32]

Computer Vision: Fall 2022 — Lecture 3

How does SVD multiply translate to additive decomposition?

 $X = \begin{bmatrix} \sigma_1 v_1 & \sigma_2 v_2 & \cdots & \cdots \\ \sigma_1 v_1 & \sigma_1 v_1 & \cdots & \cdots \\ \sigma_1$ ROWLYT $= \sigma_1 \mathcal{Y}_{\mathcal{N}_1}^{\mathsf{T}} + \sigma_2 \mathcal{Y}_2 \mathcal{Y}_2^{\mathsf{T}} + \cdots + \sigma_n$ ADDITIVE DECONP. of the date matim Xinto n Ronk-1 matricen ഗ

Eigen Faces

Eigen Faces

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 3

Eigen Faces

Computer Vision: Fall 2022 — Lecture 3

Understanding Matrix Math behind Eigen Faces

Linear Combination of EigenFaces

مروان موان

 Given an image I - Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix

- Given an image I Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
- **2** Compute SVD of R, G, B So 3 separate SVDs

- Given an image I Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
- 2 Compute SVD of *R*, *G*, *B* So 3 separate SVDs
- Ick a k for reduced SVD and compute the reduced SVD factors for R,G,B

- Given an image I Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
- 2 Compute SVD of *R*, *G*, *B* So 3 separate SVDs
- Pick a k for reduced SVD and compute the reduced SVD factors for R,G,B
- Occupie the reconstructed $\tilde{R}, \tilde{G}, \tilde{B}$ from the reduced SVD factors of each of the matrices

- Given an image I Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
- 2 Compute SVD of *R*, *G*, *B* So 3 separate SVDs
- Pick a k for reduced SVD and compute the reduced SVD factors for R,G,B
- Occupies the reconstructed $\tilde{R}, \tilde{G}, \tilde{B}$ from the reduced SVD factors of each of the matrices
- **(3)** Use $\tilde{R}, \tilde{G}, \tilde{B}$ to reconstruct the image from compression.

- Given an image I Let R, G, B the matrices corresponding to the Red, Green and Blue Channels of the image matrix
- **2** Compute SVD of R, G, B So 3 separate SVDs
- Pick a k for reduced SVD and compute the reduced SVD factors for R,G,B
- Output the reconstructed $\tilde{R}, \tilde{G}, \tilde{B}$ from the reduced SVD factors of each of the matrices
- **(3)** Use $\tilde{R}, \tilde{G}, \tilde{B}$ to reconstruct the image from compression.
- OPlot the reconstructed images for at least 3 different compression factors (e.g. 2, 5, 10).

Next Topic: Image Processing with Convolutions

What is a convolution?

Convolution

Mathematical operation of sliding a convolution matrix (or kernel) across an input matrix. As the sliding happens, the window of the input matrix gets averaged by the convolution matrix to get a scalar. The scalar is added to the output matrix.

Computer Vision: Fall 2022 — Lecture 3

Box Blur Convolution

Box Blur

Applying Box Blur On An Image.

ICE #4

Edge Detection Kernel

Original Image

Edge Detected

Edge Detection Kernel

Laplacian Edge detection $C = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$. Then *C* is called the Laplacian edge detection kernel and identifies edges in images. This is one of the ways to produce edges.

Sobel Edge detection

Original Image:

Edge Detected:

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 3

October 6, 2022

What does this Kernel do?

Let
$$C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. What happens when C is convolved with an image?

- It blurs the image
- It sharpens the image 2
- It finds edges in the image 3
- It leaves the image unchanged 4

Sharpening an Image

Original Image(Left) and Image after applying Sharpen Filter of size 3×3 (Right)

Sharpening an Image

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 3

October 6, 2022

Convolution Playground

Convolution Playground

Next Topic: Clustering of Data/Images

Big Picture

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3

The clustering problem

K P # dustry

Difference In the classification problem, you are given (x^i, y_i) - I.e. both the data point *i* and its true label y_i for training purposes. Example - a flower *i* and its label (flower type). Whereas in clustering problem, you are just given the data points, i.e. x'. However, you still want to break up the data points into clusters - where each cluster has relatively similar data points.

Digits Clustering

Clustering of data points

Clustering for News

SPORTS

WORLD NEWS

Clustering for News

User preferences are important to learn, but can be challenging to do in practice.

- People have complicated preferences
- Topics aren't always clearly defined

Clustering for News

What if the labels are known? Given labeled training data

Can do multi-class classification methods to predict label

Clustering Basics

- In many real world contexts, there aren't clearly defined labels so we won't be able to do classification
- We will need to come up with methods that uncover structure from the (unlabeled) input data X.
- Clustering is an automatic process of trying to find related groups within the given dataset.

Clustering Basics

In their simplest form, a **cluster** is defined by

- The location of its center (centroid)
- Shape and size of its spread

Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

- x_i gets assigned $z_i \in [1, 2, ..., k]$
- Usually based on closest centroid

Will define some kind of score for a clustering that determines how good the assignments are

 Based on distance of assigned examples to each cluster

Euclidean Distance

Distance between two points, x_1, x_1 is given by:

$$||x_1 - x_2||_2$$

Clustering on different Data sets

Clustering is easy when distance captures the clusters

Clustering - Hard cases

There are many clusters that are harder to learn with this setup

Distance does not determine clusters

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: maximization: Compute the new centroid (mean) of each cluster.
- 6: until The centroid positions do not change.

Start by choosing the initial cluster centroids

- A common default choice is to choose centroids at random
- Will see later that there are smarter ways of initializing

Assign each example to its closest cluster centroid

$$z_i \leftarrow \operatorname*{argmin}_{j \in [k]} \left| \left| \mu_j - x_i \right| \right|^2$$

Update the centroids to be the mean of all the points assigned to that cluster.

$$\mu_j \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i$$

Computes center of mass for cluster!

Repeat Steps 1 and 2 until convergence

Will it converge? Yes! Stop when

- Cluster assignments haven't changed
- Some number of max iterations have been passed

What will it converge to?

- Global optimum
- Local optimum
- Neither

Improving kMeans?

kMeans++

Next lecture?