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Weekly Logistics

Day Timings Class type
Lecture 1 (In-person) T 4 pm - 6 pm (In-person)
Lecture 2 Th 4 pm - 6 pm Zoom
O�ce Hours Karthik T 6 - 6:30 pm In-person/Zoom
Calendly 15 min Karthik October Zoom
O�ce Hours Ayush Fri 5-6 pm Zoom
Quiz Section Ayush Mon 5-6 pm Zoom
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References for Lecture

1 Image Compression with SVD

2 Wikipedia on Image Convolutions

3 Convolution Playground

4 Deep Learning TextBook by Yoshua Bengio et al

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 3 / 50

https://timbaumann.info/svd-image-compression-demo/
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://generic-github-user.github.io/Image-Convolution-Playground/src/
https://www.deeplearningbook.org/


Assessments Breakdown
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Today

1 SVD and Image applications

2 Matrix Arithmetic Refresher

3 Convolutions and Image Processing

4 Introduction to clustering and kMeans
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Notebook on SVD
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ICE #1

Matrix Arithmetic

Let X =

2

4
1 2 3
4 5 6
7 8 10

3

5 Then the reduced SVD of X with k = 2 and

rounded to 1 decimal place is given by:
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ICE #1

Matrix Arithmetic

Which of the following is true for a) The dot product of the first and
second column of the given Utilde and b) The dot product of the first and
second row of Vtilde

1 equals 0 and equals 0

2 close to 0 and close to 0

3 equals 0 and close to 0

4 close to 0 and equals 0
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ICE #2

Matrix Rank and Singular Factors

Let X =

2

4
1 2 3
4 5 6
7 8 9

3

5. Notice we replaced the (2, 2) element with 9

instead of 10 from the previous ICE. Which of the following is true of X
(you can say this even without having to compute the SVD of X ):

1 The matrix rank of X is 2 and the number of non-zero singular values
of X is 2

2 The matrix rank of X is 3 and the number of non-zero singular values
of X is 3

3 The matrix rank of X is 3 and the number of non-zero singular values
of X is 2

4 The matrix rank of X is 2 and the number of non-zero singular values
of X is 3
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Two ways to multiply Matrices
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ICE #3

Matrix multiplication

Let X =


1 2
4 5

�
and Y =


1 3
2 4

�
. Let Z = XY . Note that

Z = [XY1XY2]. What is Z2 here?

1 [11, 32]

2 [32, 10]

3 [10, 32]

4 [11, 10, 32]
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Matrix Arithmetic

How does SVD multiply translate to additive decomposition?
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Eigen Faces

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 13 / 50



Eigen Faces
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Eigen Faces
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Understanding Matrix Math behind Eigen Faces
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SVD and PCA
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Assignment 1: Data compression using SVD

1 Given an image I - Let R ,G ,B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

2 Compute SVD of R ,G ,B - So 3 separate SVDs

3 Pick a k for reduced SVD and compute the reduced SVD factors for
R,G,B

4 Compute the reconstructed R̃ , G̃ , B̃ from the reduced SVD factors of
each of the matrices

5 Use R̃ , G̃ , B̃ to reconstruct the image from compression.

6 Plot the reconstructed images for at least 3 di↵erent compression
factors (e.g. 2, 5, 10).
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Next Topic: Image Processing with Convolutions
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What is a convolution?

Convolution

Mathematical operation of sliding a convolution matrix (or kernel) across
an input matrix. As the sliding happens, the window of the input matrix
gets averaged by the convolution matrix to get a scalar. The scalar is
added to the output matrix.

Blurring an Image
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Box Blur Convolution

Box Blur
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ICE #4

Box Blur

Let X =

2

4
1 2 3
4 5 6
7 8 9

3

5 be the input image. Use the 2x2 box blur to

convolve against X . What is the output matrix look like?

1


1 2
4 5

�

2


3 5
8 9

�

3


5 6
7 8

�

4


3 4
6 7

�
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Edge Detection Kernel
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Edge Detection Kernel
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Edge detection Kernel

Laplacian Edge detection

C =

2

4
0 �1 0
�1 4 �1
0 �1 0

3

5. Then C is called the Laplacian edge detection

kernel and identifies edges in images. This is one of the ways to produce
edges.
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Sobel Edge detection
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ICE #5

What does this Kernel do?

Let C =

2

4
0 0 0
0 1 0
0 0 0

3

5. What happens when C is convolved with an

image?

1 It blurs the image

2 It sharpens the image

3 It finds edges in the image

4 It leaves the image unchanged
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Sharpening an Image
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Sharpening an Image
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Convolution Playground

Convolution Playground
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https://generic-github-user.github.io/Image-Convolution-Playground/src/


Next Topic: Clustering of Data/Images
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Big Picture
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The clustering problem
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Clustering vs Classification

Di↵erence

In the classification problem, you are given (x i , yi ) - I.e. both the data
point i and its true label yi for training purposes. Example - a flower i and
its label (flower type). Whereas in clustering problem, you are just given
the data points, i.e. x i . However, you still want to break up the data
points into clusters - where each cluster has relatively similar data points.
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Digits Clustering
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Clustering of data points
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Clustering for News
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Clustering for News

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 38 / 50



Clustering for News
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Clustering Basics
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Clustering Basics
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Distance typically used

Euclidean Distance

Distance between two points, x1, x1 is given by:

kx1 � x2k2
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Clustering on di↵erent Data sets
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Clustering - Hard cases
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k-means
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k-means Clustering

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 46 / 50



k-means Clustering
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k-means Clustering
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k-means Clustering
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Improving kMeans?

kMeans++

Next lecture?
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