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S
Weekly Logistics

Day Timings Class type
Lecture 1 (In-person) T | 4pm-6pm (In-person)
Lecture 2 Th | 4 pm -6 pm /oom
Office Hours Karthik T | 6-6:30 pm | In-person/Zoom
Calendly 15 min Karthik | October /oom
Office Hours Ayush Fri 5-6 pm Zoom
Quiz Section Ayush Mon 5-6 pm Zoom
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References for Lecture

©® Image Compression with SVD
© Wikipedia on Image Convolutions

© Convolution Playground .
© Deep Learning TextBook by Yoshua Bengio et al }‘[’:\;n&
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https://timbaumann.info/svd-image-compression-demo/
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://generic-github-user.github.io/Image-Convolution-Playground/src/
https://www.deeplearningbook.org/

Assessments Breakdown

,(CE Conceptual Assignment
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Mini Project
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4 . .
© Convolutions and Image Processing

© Introduction to clustering and kMeans k
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e
Notebook on SVD
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ICE #1

Matrix Arithmetic

1 2 3
let X =] 4 5 6
7 8 10

Then the reduced SVD of X with kK = 2 and

rounded to 1 decimal place is given by:

print(np.round(Utilde, 1))
print(np.round(Vtilde,1))
print(np.round(np.diag(Stilde),1))

[81] v/ 0.5s

[[-0.2 1. ]
[-0.5 0. ]
[-0.8 -0.31]
[[-0.5 -0.6 -0.7]
[-0.8 0. 0.6]]

[[17.4 0. ]
[ 0. 0.9]]
vy
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I
ICE #1

Matrix Arithmetic

(np.round(Utilde,1))
(np.round(Vtilde,1))
(np. round(np.diag(Stilde),1))

print
print
print

1 v 0.5s

- [[-0.2 1.1
[-0.5 0. ]
[-0.8 -0.31]
[[-0.5 -0.6 -0.7]
[-0.8 @. 0.61]
[[17.4 0. ]
[ 0. 0.9]]

Which of the following is true for a) The dot product of the first and
second column of the given Utilde and b) The dot product of the first and
second row of Vtilde

@ equals 0 and equals 0
@ close to 0 and close to 0

© equals 0 and close to 0

© close to 0 and equals 0
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I
ICE 42

Matrix Rank and Singular Factors

(1 2 3]
let X =| 4 5 6 |. Notice we replaced the (2,2) element with 9
7 8

instead of 10 from the previous ICE. Which of the following is true of X
(you can say this even without having to compute the SVD of X):

© The matrix rank of X is 2 and the number of non-zero singular values
of X is 2

© The matrix rank of X is 3 and the number of non-zero singular values
of X is 3

© The matrix rank of X is 3 and the number of non-zero singular values
of X is 2

@ The matrix rank of X is 2 and the number of non-zero singular values
of X is 3
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I
ICE 43

Matrix multiplication

LetX:[1 2] and Yz[l 3].LetZ:XY. Note that

4 5 2 4
Z = [XY1XY>5]. What is Z> here?
@ [11,32
Q@ [32,10]
@ [10,32]
Q [11,10,32]
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-
Matrix Arithmetic

How does SVD multiply translate to additive decomposition? J
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Eigen Faces

true label: Bush true label: Powell true label: Rumsfeld true label: Blair

/ true label: Schr
@\/‘ true label: Schroeder true label: Chavez true label: Rumsfeldtrue label: Rumsfeld
Training Image with True Label (LFW people’s dataset)

Tofe thwﬁ‘v Py 0-NRENE
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Eigen Faces

These Uj a

eigenface 0

called EigenFaces.

eigenface 1 eigenface 2

eigenface 3

D‘\D
+33

|0

eigenface 4 eigenface 5 eigenface 6

T

>
. L

eigenface 8

eigenface 9 elgenface 10 eigenface 11
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Eigen Faces
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Linear Combination of EigenF.
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Understanding Matrix Math behind Eigen Faces

~

— CRT .
” & WU*E
e

Linear Combination of EigenFaces
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SVD and PCA
VA

9
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Assignment 1: Data compression using SVD
qu\‘:\(C,w‘\/ﬁ
e

© Given an image [ - Let R, G, B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

7/
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Assignment 1: Data compression using SVD

© Given an image [ - Let R, G, B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

@ Compute SVD of R, G, B - So 3 separate SVDs
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Assignment 1: Data compression using SVD

© Given an image [ - Let R, G, B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

@ Compute SVD of R, G, B - So 3 separate SVDs

© Pick a/k for reduced SVD and compute the reduced SVD factors for
R,G,B
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Assignment 1: Data compression using SVD

© Given an image [ - Let R, G, B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

@ Compute SVD of R, G, B - So 3 separate SVDs

© Pick a k for reduced SVD and compute the reduced SVD factors for
R,G,B

@ Compute the reconstructed R, G, B from the reduced SVD factors of
each of the matrices
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Assignment 1: Data compression using SVD

© Given an image [ - Let R, G, B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

@ Compute SVD of R, G, B - So 3 separate SVDs

© Pick a k for reduced SVD and compute the reduced SVD factors for
R,G,B

— ~ e~
Q@ Compute thM R, G, B from the reduced SVD factors of
each of the mafric —

© Use R, G, B to reconstruct the iImage from compression.

—
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Assignment 1: Data compression using SVD

© Given an image [ - Let R, G, B the matrices corresponding to the
Red, Green and Blue Channels of the image matrix

@ Compute SVD of R, G, B - So 3 separate SVDs

© Pick a k for reduced SVD and compute the reduced SVD factors for
R,G,B

@ Compute the reconstructed R, G, B from the reduced SVD factors of
each of the matrices

© Use R, G, B to reconstruct the iImage from compression.

O Plot the reconstructed images for at least 3 different compression

factors (eg 2, 5, 10). ' -
W
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Next Topic: Image Processing with Convolutions

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 19/50



What is a convolution?

Convolution

Mathematical operation of sliding a convolution matrix (or kernel) across
an input matrix. As the sliding happens, the window of the input matrix
gets averaged by the convolution matrix to get a scalar. The scalar is

added to the output matrix. ks )

Blurring an Image

N
Dw(’m““a \ .
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(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 20 /50

L .




Box Blur Convolution

Box Blur

W 2 R13 145 17?65 45 1213 45‘

12413 +45+23+28+11+ 14+ 20+ 34

23 |28 |11 12 [ 13 | 31 23|28 |11 -
- | = \ o> | 2 > 5 22.222 ..
0‘ ] 14 [[20 | 34} 65 /20 | 23 14 | 20 | 34 O ,) Zo=s

Kemel For Mean Blur Intermediate Matrix

32|46 |10 19 | 56 | 34

68 | 14 | 15 | 20 | 29 | 23 ./ 21

2 z
34 (32|21 22|67 | 54 /}

Input Image

Output Image

Applying Box Blur On An Image.
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ICE 4
Box Blur

Let X =

convolve agains

o [}
3
o
o

2

~N &~ OO O ©O© OC1 Ol
] 1 ] 1 ] 1

~N B

o OC1 DN

—

| <[]
-

be the input image. Use the 2x2 box blur to

O O W

X. What is the output matrix look like?
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Edge Detection Kernel -

GG R

Edge Detected

Original Image
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S
Edge Detection Kernel

-l/ "/\? R
- | ! o
&(/i Vs - AT
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Edge detection Kernel

Laplacian Edge detection

C =

kernel afid=identifies edges in images. This is one of the ways to produce
edges.

0
—1
0

—1
4
—1

0
—1
0

. Then C is called the Laplacian edge detection
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S
Sobel Edge detection

Original Image: Edge Detected:
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ICE +#5

What does this Kernel do?

Let C =

Image”?

© It blurs the image

o O O

O - O

O O O

. What happens when C is convolved with an

© It sharpens the image

© It finds edges in the image

© It leaves the image unchanged
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Sharpening an Image

L] ) 5 Image Shampening - 0 X

Original Image(Left) and Image after applying Sharpen Filter of size 3x3 (Right)
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Sharpening an Image
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Convolution Playground

Convolution Playground
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https://generic-github-user.github.io/Image-Convolution-Playground/src/

I
Next Topic: Clustering of Data/Images
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I
Big Picture
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Structure Image
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he clustering problem
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Clustering vs Classification

ot
Difference f’w e
In the classification problem, you are given (xi,@ - |l.e. both the data
point / and its true label y; for training purposes. Example - a flower / and
its label (flower type). Whereas in clustering problem, you are just given
the data points, i.e. x'. However, you still want to break up the data

points into clusters - where each cluster has relatively similar data points.

y
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Clustering of data points

Before K-Means After K-Means

A A

TR )
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Clustering for News

SPORTS WORLD NEWS
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Clustering for News

User preferences are important to learn, but can be challenging to
do in practice.

People have complicated preferences I

@ ..
05
04 +
03 1
02
01 —

Topics aren’t always clearly defined

Use feedback to
learn user
preferences
over topics

CIuster Cluster 4
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Clustering for News

What if the labels are known? Given labeled training data

B[B[C)

WORLD [, 9 a
NEWS | 207"

ENTERTAINMENT SCIENCE

Can do multi-class classification methods to predict label

WORLD
NEWS

ENTERTAINMENT

TECHNOLOGY
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Clustering Basics

In many real world contexts, there aren’t clearly defined labels
so we won't be able to do classification

We will need to come up with methods that uncover
structure from the (unlabeled) input data X.

Clustering is an automatic process of trying to find related
groups within the given dataset.

Input: x4, X3, ..., X,

Output: z4,2,, ..., Zp,

U . ro :. LI
*tt . « 3 S et o
. ... . o o . :.. ..
. ) s.
e *
°® ’.0..
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Clustering Basics

In their simplest form, a cluster is defined by
The location of its center (centroid)

Shape and size of its spread

Clustering is the process of finding these clusters and assigning
each example to a particular cluster.

x; gets assigned z; € [1, 2, ..., k]

Usually based on closest centroid

Will define some kind of score for a :
clustering that determines how good e 7 )

the assignments are
Based on distance of assigned o, SN0 854

examples to each cluster
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I
Distance typically used

Euclidean Distance
Distance between two points, x1, xq1 is given by:

[x1 — x2|2

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3 October 6, 2022 42 /50



Clustering on different Data sets

Clustering is easy when distance captures the clusters

Ground Truth (not visible) Given Data
r’ " :j' ~ : o
4L

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 3

October 6, 2022

43 /50



Clustering - Hard cases

There are many clusters that are harder to learn with this setup

Distance does not determine clusters
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Algorithm 1 k-means algorithm

1: Specity the number k of clusters to assign.

2: Randomly initialize k£ centroids.

3: repeat

4: expectation: Assign each point to its closest centroid.

5.  maximization: Compute the new centroid (mean) of each cluster.
6: until The centroid positions do not change.
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k-means Clustering

Start by choosing the initial cluster centroids
A common default choice is to choose centroids at random

Will see later that there are smarter ways of initializing
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k-means Clustering

Assign each example to its closest cluster centroid
2

Z; < argmin ||uj — xl-|
JE[K]
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k-means Clustering

Update the centroids to be the mean of all the points assigned to

that cluster.
>3
Hj n. Xi

) i:zi=j

Computes center of mass for cluster!
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k-means Clustering

Repeat Steps 1 and 2 until convergence

Will it converge? Yes! Stop when

Cluster assignments haven't
changed

Some number of max iterations
have been passed

What will it converge to?

Global optimum
Local optimum

Neither
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Improving kMeans?

kMeans-+-+
Next lecture? J
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