Computer Vision: Fall 2022 - Lecture 5
 Dr. Karthik Mohan

Univ. of Washington, Seattle

October 14, 2022

Check-In

Today

(1) Computational Complexity of Algorithms
(2) tSNE for Image Visualization
(3) Embeddings
(9) Total Variation (TV) methods for image smoothing

References

(1) tSNE paper
(2) Total Variation

Notion of Complexity for Algorithms

Interview Favorite
Almost any interview that involves coding (MLE, Data Science, SWE) You will get this question from the interviewer. What's the overall complexity - time and space of an algorithm?

Notion of Complexity for Algorithms

Interview Favorite

Almost any interview that involves coding (MLE, Data Science, SWE) You will get this question from the interviewer. What's the overall complexity - time and space of an algorithm?

1. Computational Complexity

In terms of the data dimensions, what's the order of time an algorithm takes to completion? Example - If you have to sum up N integers - What's the computational complexity?

Notion of Complexity for Algorithms

Interview Favorite

Almost any interview that involves coding (MLE, Data Science, SWE) You will get this question from the interviewer. What's the overall complexity - time and space of an algorithm?

1. Computational Complexity

In terms of the data dimensions, what's the order of time an algorithm takes to completion? Example - If you have to sum up N integers - What's the computational complexity?
2. Space Complexity

What extra storage space do you need to compute your result or run your algorithm? Example - If you have to sum up N integers stored in a list What's the space complexity?

Notion of Complexity for Algorithms

Which is better?
$O(1), O(N), O\left(N^{2}\right)$?

Notion of Complexity for Algorithms

Which is better?

$O(1), O(N), O\left(N^{2}\right)$?
Which is faster?
To sum up the diagonal entries of a matrix or to multiply all the elements in the same matrix?

Notion of Complexity for Algorithms

Which is better?

$O(1), O(N), O\left(N^{2}\right)$?
Which is faster?
To sum up the diagonal entries of a matrix or to multiply all the elements in the same matrix?

Which is faster?
If you time the answer to the previous question for $N=2$ in Python - You may not notice any difference in the time taken. But make $N=10 k$ and suddenly you see that the $O()$ difference starts to show up. $O()$ means you are on the order of the stated complexity, but constants might be different.

Notion of Complexity for Algorithms

Dot Product/Inner Product of tSNE embeddings Complexity
Let's say you want to take the dot product of the embeddings of two images, I_{1} and I_{2}. The images are in dimension $m \times n$ pixels. Let's say the embeddings are from tSNE and have a dimension of $N=500$. What's the computational complexity of the dot product of the embeddings?

Notion of Complexity for Algorithms

> Dot Product/Inner Product of tSNE embeddings Complexity
> Let's say you want to take the dot product of the embeddings of two images, I_{1} and I_{2}. The images are in dimension $m \times n$ pixels. Let's say the embeddings are from tSNE and have a dimension of $N=500$. What's the computational complexity of the dot product of the embeddings?

Same Complexity!

Summing up N integers has the same computational complexity as a dot product of two tSNE embeddings of dimension N ! Would the run time be exactly the same as well?

ICE \#1

Computational Complexity of Matrix-Matrix Multiplication

Let's say you computed the SVD of X and got factors, U, Σ, V. You now store a reduced form as $\tilde{U} \in^{m \times k}, \tilde{\Sigma} \in^{k}, \tilde{V} \in^{k \times n}$. For the purpose of a projection operation, you need to compute $Z=\tilde{U} \tilde{V}$. What's the computational complexity of obtaining Z ?
Hint: What's the complexity of multiplying \tilde{U} with just the first column of \tilde{V} ? Now multiply that with the number of columns in \tilde{V} to get the answer!
(1) O (mnk)
(2) $O\left(m n k^{2}\right)$
(3) $O\left(m n^{2} k\right)$
(4) $O\left(m^{2} n k^{2}\right)$

ICE \#2

Computational Complexity of a Convolution!

Let C be a convolution matrix of size $k \times k$. Let's say you have an input matrix, $I \in^{m \times n}$. Now you convolve I with C i.e. $Y=I * C$. What is the computational complexity of computing Y ? Your answer should be in terms of m, n, k. The amazing thing about this question is that it didn't matter what C looks like - It could be a blur kernel, a sharpen kernel or a smoothing kernel and the answer is the same!
(1) $O(m n k)$
(2) $O\left(m^{2} n^{2} k\right)$
(3) $O\left(m n k^{2}\right)$
(9) $O\left(m n^{2} k\right)$

Computational Complexity of kMeans

Faster Algorithm?

What does it mean to say there is a faster algorithm?
A_{2} is a faster algorithm than A_{1} to solve a problem if $O\left(A_{2}\right)<O\left(A_{1}\right)$. Example: Which is faster: Selection Sort or Merge Sort?

Clustering for Data Visualization

Images
Let's say we had 1000 images and wanted to "cluster" them onto a super-grid of images so that similar images are closely placed on the super-grid and dis-similar are placed further away. k-means clustering will only get us half-way there!

Data Visualization: Stochastic Neighborhood Embeddings (SNE)!

SNE

High-level Idea
Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

SNE

High-level Idea
Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

Soft clustering
We don't have a K here. But if you look at any neighborhood of the super grid of images - They will look similar! We can call this soft-clustering.

SNE

Similarity measure through Probabilities
Let x_{1}, x_{2}, \ldots represent features of the data in their original dimensions (e.g. images).

$$
p_{j \mid i}=\frac{e^{-\left\|x_{i}-x_{j}\right\|_{2}^{2} / 2 \sigma_{i}^{2}}}{\sum_{k \neq i} e^{-\left\|x_{i}-x_{k}\right\|_{2}^{2} / 2 \sigma_{i}^{2}}}
$$

SNE

Similarity measure through Probabilities
Let x_{1}, x_{2}, \ldots represent features of the data in their original dimensions (e.g. images).

$$
p_{j \mid i}=\frac{e^{-\left\|x_{i}-x_{j}\right\|_{2}^{2} / 2 \sigma_{i}^{2}}}{\sum_{k \neq i} e^{-\left\|x_{i}-x_{k}\right\|_{2}^{2} / 2 \sigma_{i}^{2}}}
$$

Low-dimensional embedding Probabilities
Let y_{1}, y_{2}, \ldots represent features of the data in lower (embedded) dimensions (e.g. 2 dimensions).

$$
q_{j \mid i}=\frac{e^{-\left\|y_{i}-y_{j}\right\|_{2}^{2} / 2 \sigma_{i}^{2}}}{\sum_{k \neq i} e^{-\left\|y_{i}-y_{k}\right\|_{2}^{2} / 2 \sigma_{i}^{2}}}
$$

Use the q probabilities for chaining

Image Chain

ICE \#5 (3 mins break out)
Let's say you want to create a video that has 1000 images (e.g. the one we looked at earlier) in a sequence so that the images in the video transforms smoothly from one to the next. How would you go about doing this if you learned a tSNE representation for the images?

How do we create this grid?

tSNE Reference Paper

MNIST digits data set

$$
\begin{aligned}
& 000000000000000 \\
& 1111111 / 1111111 \\
& 222222222222220 \\
& 333333333333333 \\
& 444444444444444 \\
& 555555555555555 \\
& 666666666666666 \\
& \text { フフ7クワフフ7フ7フワフ) } \\
& 888888888888888 \\
& 999999999999999
\end{aligned}
$$

MNIST tSNE embeddings

- 0
- 1
2
- 3
- 4
-
- 6
+ 7
- 8

Next Topic: Total Variation (TV) for Image Smoothing

Image Smoothing Motivation

Image Smoothing Motivation

~~

$$
\overrightarrow{T V}
$$

Image Smoothing Motivation

Blurred and Noisy image

Total Variation reconstruction

LASSO regularization reconstruction

Background for TV

Total Variation (TV)
Is based on the concept of Regularization and using ℓ_{1} or ℓ_{2} norms. We will look into this background next.

Norms

ℓ_{1} norm

The ℓ_{1} norm of a vector is the sum of the absolute values of the elements in the vector!

$$
\underline{\underline{\| x} \|_{1}}=\sum_{i}\left|x_{i}\right|
$$

Norms

ℓ_{1} norm

The ℓ_{1} norm of a vector is the sum of the absolute values of the elements in the vector!

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i}\left|x_{i}\right| \\
& \underbrace{}_{\text {reanhaten Diture }} \\
& \|x\|_{2}=\sqrt{\sum_{i}\left|x_{i}\right|^{2}} \\
& (\underset{\text { buclidean Dintence }}{ }
\end{aligned}
$$

Norms

ℓ_{1} norm

The ℓ_{1} norm of a vector is the sum of the absolute values of the elements in the vector!

$$
\|x\|_{1}=\sum_{i}\left|x_{i}\right|
$$

ℓ_{2} norm

$$
\|x\|_{2}=\sqrt{\sum_{i}\left|x_{i}\right|^{2}}
$$

Notice!

$$
\|x\|_{2} \leq\|x\|_{1}
$$

ICE \#3

ℓ_{1} and ℓ_{2} norm of a matrix
Consider a simple and normalized image matrix,

$$
X=\left[\begin{array}{cc}
1 & -2 \\
-1 & 4
\end{array}\right]
$$

Treat the image X as a column vector. What would be the ℓ_{1} and ℓ_{2} norm of that column vector? Pick the closest option
(1) 8 and 4
(2) 2 and 5
(3) 2 and 4
(4) 8 and 5

Norms and Norm Balls
Linear Systems

$$
x_{1}^{2}+x_{2}^{2} \leqslant \mathcal{D}
$$

$$
\begin{aligned}
& \left\|\left|x \|_{1}=\left|x_{1}\right|+\left|x_{2}\right|\right.\right. \\
& \|x\| \|_{1} \leqslant \alpha \Rightarrow\left|x_{1}\right|+\left|x_{2}\right| \leqslant \alpha
\end{aligned}
$$

Norms and Norm Balls

Norms and Norm Balls

ℓ_{1} norm and sparsity

Sparsity as a regularizer
ℓ_{1} norm for the reasons described in the previous slide is known to produce sparse solutions (i.e. a vector with a bunch of zeros).

ℓ_{1} norm and sparsity

Sparsity as a regularizer
ℓ_{1} norm for the reasons described in the previous slide is known to produce sparse solutions (i.e. a vector with a bunch of zeros).

Sparsity for image denoising
This "sparsifying" property is what can be used to help denoise image. And that brings to TV!

Applying Sparsity to Image Smoothing

Horizontal Image Gradient Matrix, $\underline{\underline{D_{X}}}$

$$
\left[D_{x}\right]_{i, j}(I)=I_{i+1, j}-I_{i, j}
$$

Applying Sparsity to Image Smoothing

Horizontal Image Gradient Matrix, D_{x}

$$
\left[D_{x}\right]_{i, j}(I)=I_{i+1, j}-I_{i, j}
$$

Vertical Image Gradient Matrix, D_{y}

$$
\left[D_{y}\right]_{i, j}(I)=I_{i, j+1}-I_{i, j}
$$

Total Variation (TV) definitions

TV
Let A be a measurment matrix that measured an image and gave an output f. Given f and A, can you reconstruct the image u in such a way that it is denoised as well? To do this, we solve the following optimization problem!

Total Variation (TV) definitions

Anisotropic TV

$$
\min _{u} \frac{1}{2}\|A u-f\|_{2}^{2}+\lambda T V_{\text {also }}(u)
$$

where,

$$
T V_{\text {also }}(u)=\left\|D_{x}(I)\right\|_{1}+\left\|D_{y}(I)\right\|_{1}
$$

 in $\times 4$ ad in

Total Variation (TV) definitions

Anisotropic TV

$$
\min _{u} \frac{1}{2}\|A u-f\|_{2}^{2}+\lambda^{T} T V_{\text {aiso }}(u)
$$

where,

$$
T V_{\text {aiso }}(u)=\left\|D_{x}(I)\right\|_{1}+\left\|D_{y}(I)\right\|_{1}
$$

Isotropic TV

$$
\min _{u} \frac{1}{2}\|A u-f\|_{2}^{2} \nrightarrow T V_{\text {iso }}(u)
$$

where,
$\mathrm{TV}_{\text {aiso }}(u)=\left\|\sqrt{\left|D_{x}(I)\right|^{2}+\left|D_{y}(I)\right|^{2}}\right\|_{1} \lessdot$

Image Smoothing with TV

Using TV

Given the noisy image, using anisotropic and isotropic TV gives the results as below!

MRI Reconstruction from noisy input

