Computer Vision: Fall 2022 — Lecture 5 Dr. Karthik Mohan

Univ. of Washington, Seattle

October 14, 2022

Check-In

- Computational Complexity of Algorithms
- 2 tSNE for Image Visualization
- Imbeddings
- Total Variation (TV) methods for image smoothing

- tSNE paper
- 2 Total Variation

Interview Favorite

Almost any interview that involves coding (MLE, Data Science, SWE) -You will get this question from the interviewer. What's the overall complexity - time and space of an algorithm?

Interview Favorite

Almost any interview that involves coding (MLE, Data Science, SWE) -You will get this question from the interviewer. What's the overall complexity - time and space of an algorithm?

1. Computational Complexity

In terms of the data dimensions, what's the order of time an algorithm takes to completion? Example - If you have to sum up N integers - What's the computational complexity?

Interview Favorite

Almost any interview that involves coding (MLE, Data Science, SWE) -You will get this question from the interviewer. What's the overall complexity - time and space of an algorithm?

1. Computational Complexity

In terms of the data dimensions, what's the order of time an algorithm takes to completion? Example - If you have to sum up N integers - What's the computational complexity?

2. Space Complexity

What extra storage space do you need to compute your result or run your algorithm? Example - If you have to sum up N integers stored in a list - What's the space complexity?

Which is better? $O(1), O(N), O(N^2)$?

Which is better? $O(1), O(N), O(N^2)$?

Which is faster?

To sum up the diagonal entries of a matrix or to multiply all the elements in the same matrix?

Which is better? $O(1), O(N), O(N^2)$?

Which is faster?

To sum up the diagonal entries of a matrix or to multiply all the elements in the same matrix?

Which is faster?

If you time the answer to the previous question for N = 2 in Python - You may not notice any difference in the time taken. But make N = 10k and suddenly you see that the O() difference starts to show up. O() means you are on the order of the stated complexity, but constants might be different.

Dot Product/Inner Product of tSNE embeddings Complexity

Let's say you want to take the dot product of the embeddings of two images, I_1 and I_2 . The images are in dimension $m \times n$ pixels. Let's say the embeddings are from tSNE and have a dimension of N = 500. What's the computational complexity of the dot product of the embeddings?

Dot Product/Inner Product of tSNE embeddings Complexity

Let's say you want to take the dot product of the embeddings of two images, I_1 and I_2 . The images are in dimension $m \times n$ pixels. Let's say the embeddings are from tSNE and have a dimension of N = 500. What's the computational complexity of the dot product of the embeddings?

Same Complexity!

Summing up N integers has the same computational complexity as a dot product of two tSNE embeddings of dimension N! Would the run time be exactly the same as well?

ICE #1

Computational Complexity of Matrix-Matrix Multiplication

Let's say you computed the SVD of X and got factors, U, Σ, V . You now store a reduced form as $\tilde{U} \in {}^{m \times k}, \tilde{\Sigma} \in {}^{k}, \tilde{V} \in {}^{k \times n}$. For the purpose of a projection operation, you need to compute $Z = \tilde{U}\tilde{V}$. What's the computational complexity of obtaining Z? **Hint:** What's the complexity of multiplying \tilde{U} with just the first column of \tilde{V} ? Now multiply that with the number of columns in \tilde{V} to get the answer!

- 0 (mnk)
- O(mnk²)
- O(mn²k)
- $\bigcirc O(m^2nk^2)$

ICE #2

Computational Complexity of a Convolution!

Let C be a convolution matrix of size $k \times k$. Let's say you have an input matrix, $I \in {}^{m \times n}$. Now you convolve I with C i.e. Y = I * C. What is the computational complexity of computing Y? Your answer should be in terms of m, n, k. The amazing thing about this question is that it didn't matter what C looks like - It could be a blur kernel, a sharpen kernel or a smoothing kernel and the answer is the same!

- O(mnk)
- $O(m^2n^2k)$
- O(mnk²)
- $\bigcirc O(mn^2k)$

Computational Complexity of kMeans

What does it mean to say there is a faster algorithm?

 A_2 is a faster algorithm than A_1 to solve a problem if $O(A_2) < O(A_1)$. Example: Which is faster: Selection Sort or Merge Sort?

Images

Let's say we had 1000 images and wanted to "cluster" them onto a super-grid of images so that similar images are closely placed on the super-grid and dis-similar are placed further away. k-means clustering will only get us half-way there!

Data Visualization: Stochastic Neighborhood Embeddings (SNE)!

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 5

October 14, 2022

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

Soft clustering

We don't have a *K* here. But if you look at any neighborhood of the super grid of images - They will look similar! We can call this soft-clustering.

SNE

Similarity measure through Probabilities

Let x_1, x_2, \ldots represent features of the data in their original dimensions (e.g. images).

$$p_{j|i} = \frac{e^{-\|x_i - x_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|_2^2/2\sigma_i^2}}$$

Similarity measure through Probabilities

Let x_1, x_2, \ldots represent features of the data in their original dimensions (e.g. images).

$$p_{j|i} = rac{e^{-\|x_i - x_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|_2^2/2\sigma_i^2}}$$

Low-dimensional embedding Probabilities

Let y_1, y_2, \ldots represent features of the data in lower (embedded) dimensions (e.g. 2 dimensions).

$$q_{j|i} = \frac{e^{-\|y_i - y_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|y_i - y_k\|_2^2/2\sigma_i^2}}$$

Use the q probabilities for chaining

ICE #5 (3 mins break out)

Let's say you want to create a video that has 1000 images (e.g. the one we looked at earlier) in a sequence so that the images in the video transforms smoothly from one to the next. How would you go about doing this if you learned a tSNE representation for the images?

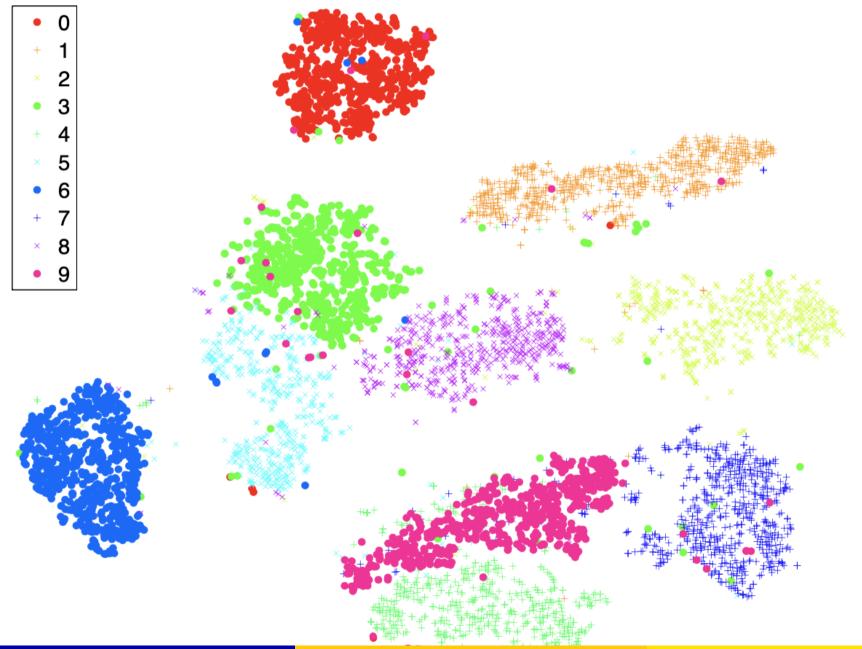
How do we create this grid?

tSNE Reference Paper

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 5 October 14, 2022

0000000000000000000 / \ \ \ / 1 / 1 / 7 1) / / | 222222222222222 66666666666666666 ファチョアファファファファファ 888888888888888888888 9999999999999999999999

MNIST tSNE embeddings



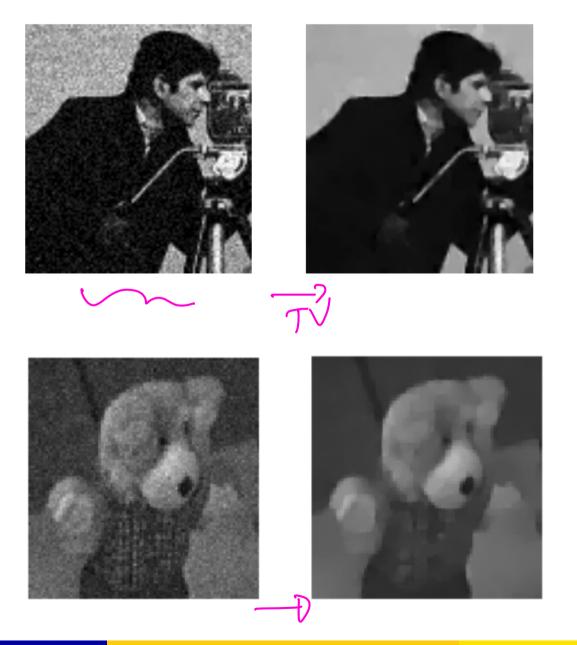
(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 5

Next Topic: Total Variation (TV) for Image Smoothing

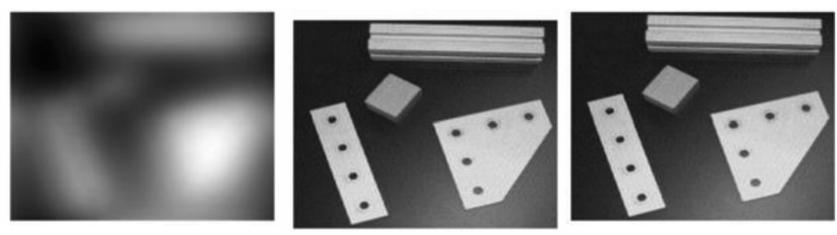
Image Smoothing Motivation

Image Smoothing Motivation



(Univ. of Washington, Seattle)

Image Smoothing Motivation



Blurred and Noisy image

Total Variation reconstruction

LASSO regularization reconstruction

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 5

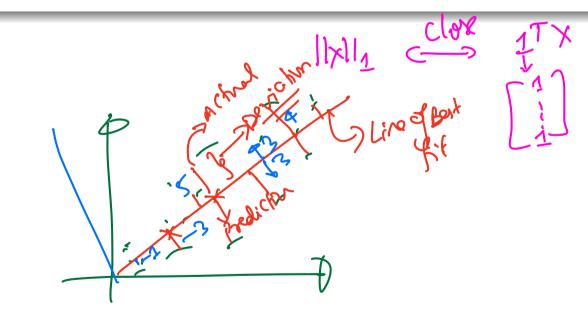
Total Variation (TV) Is based on the concept of Regularization and using ℓ_1 or ℓ_2 norms. We will look into this background next.

Norms

$\ell_1 \, \, \text{norm} \,$

The ℓ_1 norm of a vector is the sum of the absolute values of the elements in the vector!

$$\|x\|_1 = \sum_i |x_i|$$



Norms

$\ell_1 \text{ norm}$

The ℓ_1 norm of a vector is the sum of the absolute values of the elements in the vector! $\|x\|_1 = \sum_i |x_i|$

$$\|x\|_{2} = \sqrt{\sum_{i} |x_{i}|^{2}}$$

7 Manhatten Distere

Norms

$\ell_1 \text{ norm}$

The ℓ_1 norm of a vector is the sum of the absolute values of the elements in the vector!

$$\|x\|_1 = \sum_i |x_i|$$

 $\ell_2 \text{ norm}$

$$||x||_2 = \sqrt{\sum_i |x_i|^2}$$

Notice!

$$||x||_2 \le ||x||_1$$

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 5

October 14, 2022 26 / 36

ICE #3

$\ell_1 \text{ and } \ell_2 \text{ norm of a matrix}$

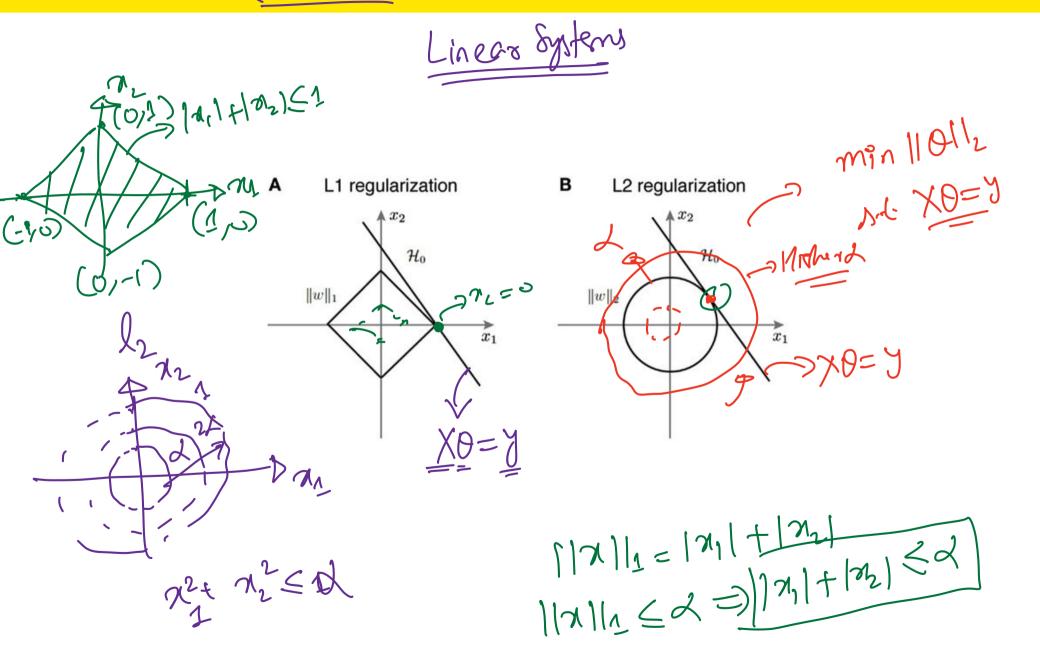
Consider a simple and normalized image matrix,

$$X = \left[\begin{array}{rrr} 1 & -2 \\ -1 & 4 \end{array} \right]$$

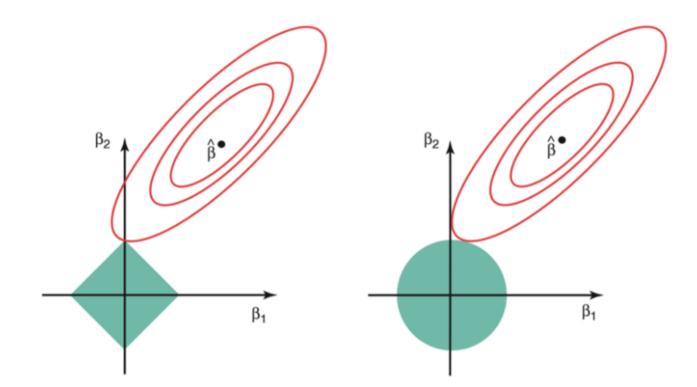
Treat the image X as a column vector. What would be the ℓ_1 and ℓ_2 norm of that column vector? Pick the closest option

- 2 and 5
- 3 2 and 4
- 4 8 and 5

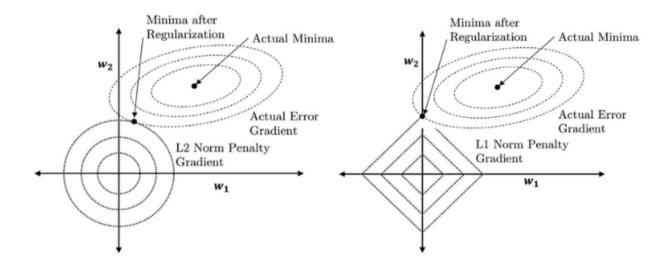
Norms and Norm Balls



Norms and Norm Balls



Norms and Norm Balls



Sparsity as a regularizer

 ℓ_1 norm for the reasons described in the previous slide is known to produce sparse solutions (i.e. a vector with a bunch of zeros).

Sparsity as a regularizer

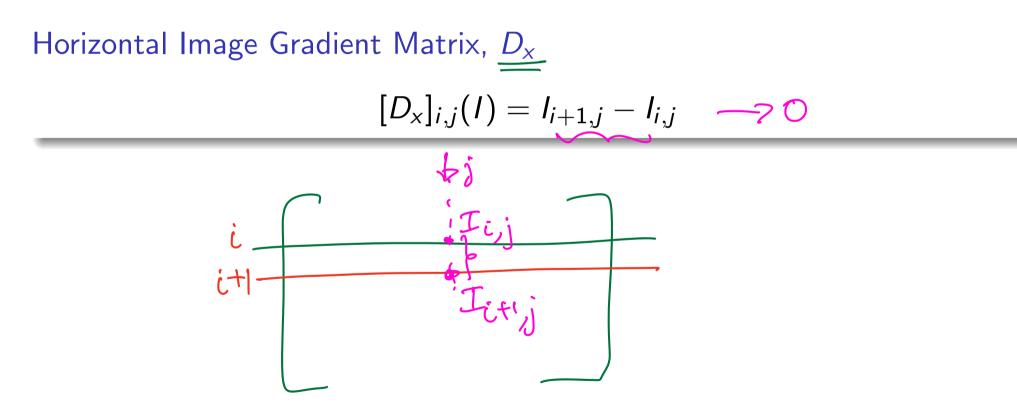
 ℓ_1 norm for the reasons described in the previous slide is known to produce sparse solutions (i.e. a vector with a bunch of zeros).

Sparsity for image denoising

This "sparsifying" property is what can be used to help denoise image. And that brings to TV!

31 / 36

Applying Sparsity to Image Smoothing

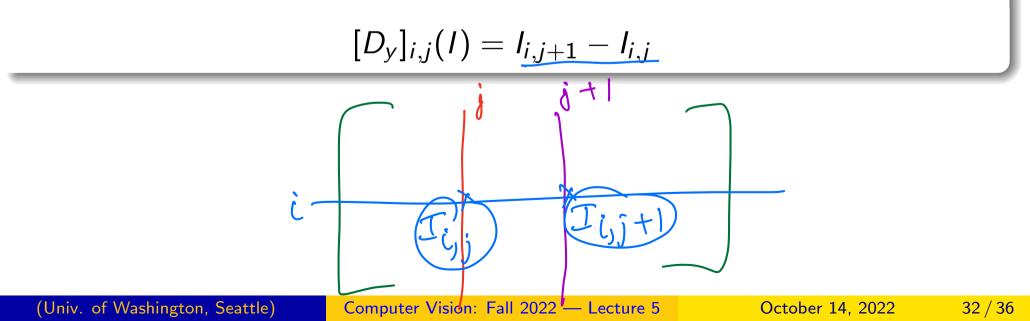


Applying Sparsity to Image Smoothing

Horizontal Image Gradient Matrix, D_X

$$[D_x]_{i,j}(I) = I_{i+1,j} - I_{i,j}$$

Vertical Image Gradient Matrix, D_y



Total Variation (TV) definitions

TV

Let A be a measurment matrix that measured an image and gave an output f. Given f and A, can you reconstruct the image u in such a way that it is denoised as well? To do this, we solve the following optimization problem!

$$\begin{array}{c} \min \frac{1}{2} \|Au - f\|_{2}^{2} + TV(u) & \text{Marker for a start for a start$$

Total Variation (TV) definitions

Anisotropic TV $\min_{u} \frac{1}{2} \|Au - f\|_{2}^{2} + V_{aiso}(u)$ where, $TV_{aiso}(u) = \|D_x(I)\|_1 + \|D_v(I)\|_1$ Koop Groadlerth in xfy direction sparste Applyight nortodients

34 / 36

Total Variation (TV) definitions

Anisotropic TV

$$\min_{u} \frac{1}{2} \|Au - f\|_2^2 + V_{aiso}(u)$$

where,

$$TV_{aiso}(u) = \|D_x(I)\|_1 + \|D_y(I)\|_1$$

Isotropic TV

$$\min_{u}\frac{1}{2}\|Au-f\|_2^2 + TV_{iso}(u)$$

where,

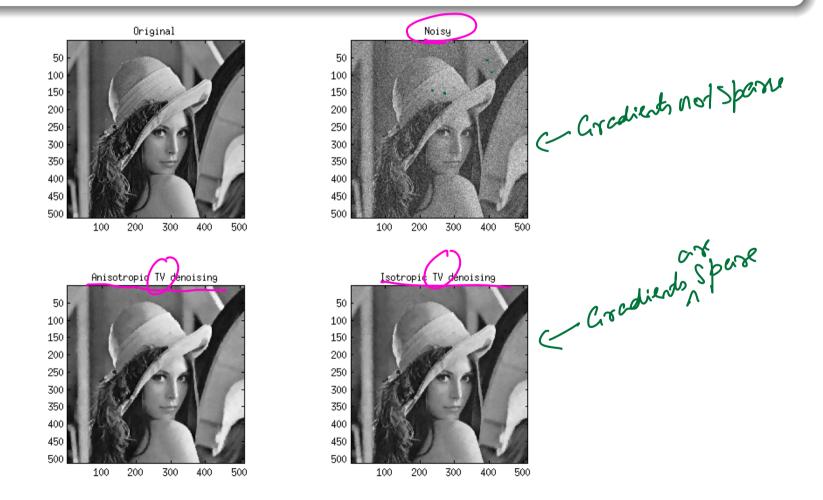
 $TV_{aiso}(u) = \|\sqrt{|D_x(I)|^2 + |D_y(I)|^2}\|_{1}$

34 / 36

Image Smoothing with TV

Using TV

Given the noisy image, using anisotropic and isotropic TV gives the results as below!



(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 5

MRI Reconstruction from noisy input

