Computer Vision: Fall 2022 — Lecture 7 Dr. Karthik Mohan

Univ. of Washington, Seattle

October 21, 2022

Check-In

JIP.TS Date set

Assignment 3 assigned

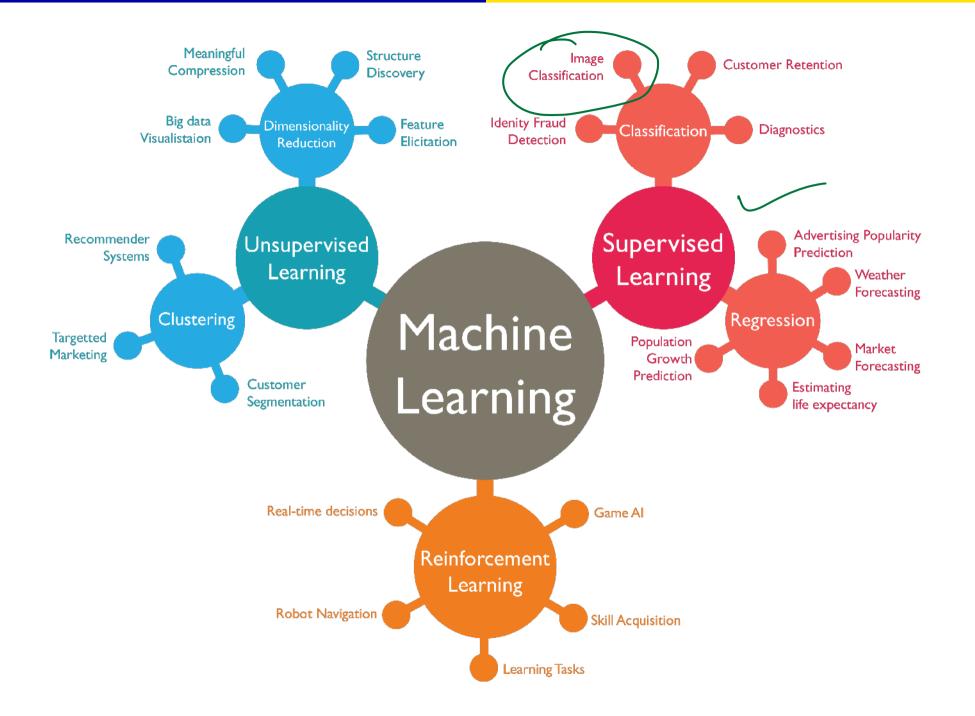
Check-In

- Assignment 3 assigned
- Other thoughts/questions?

Today

- Binary Classification Recap <
- Classification Metrics
 Train/Validation/Test Data Sets
- Over-fitting and Regularization 4

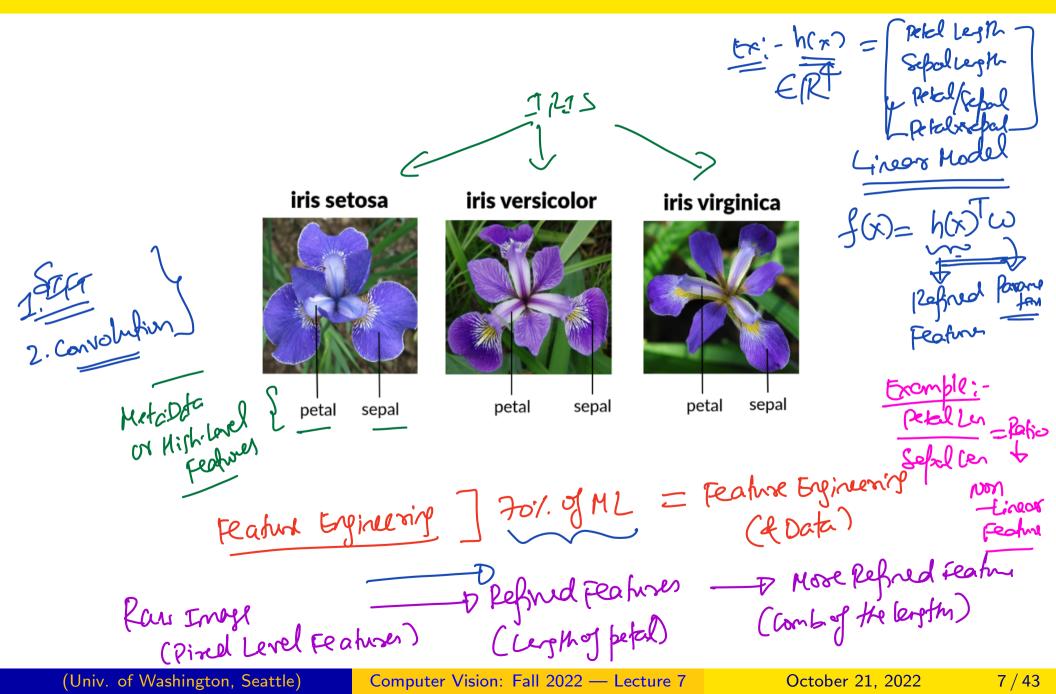
Good Book for Machine Learning Concepts



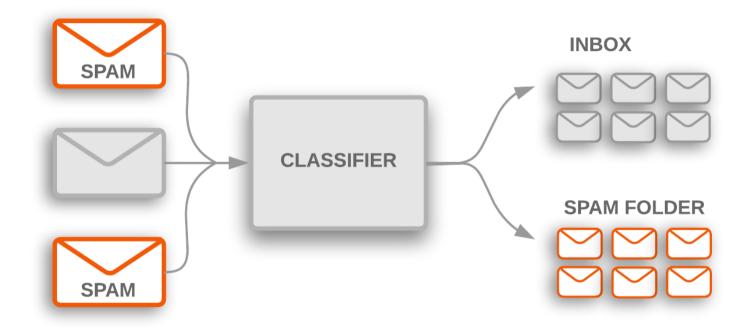
Computer Vision Topics

- Image Processing using convolutions
- Image De-noising
- Image Smoothing
- Image Clustering
- Image Classification
- Object Detection
- Semantic Segmentation
- Instance Segmentation (maybe)
- Image Embeddings
- Image to Text
- Image Captioning
- Text to Image (high-level)

Flower Classification



Classification in Machine Learning



Difference between Classification and Regression

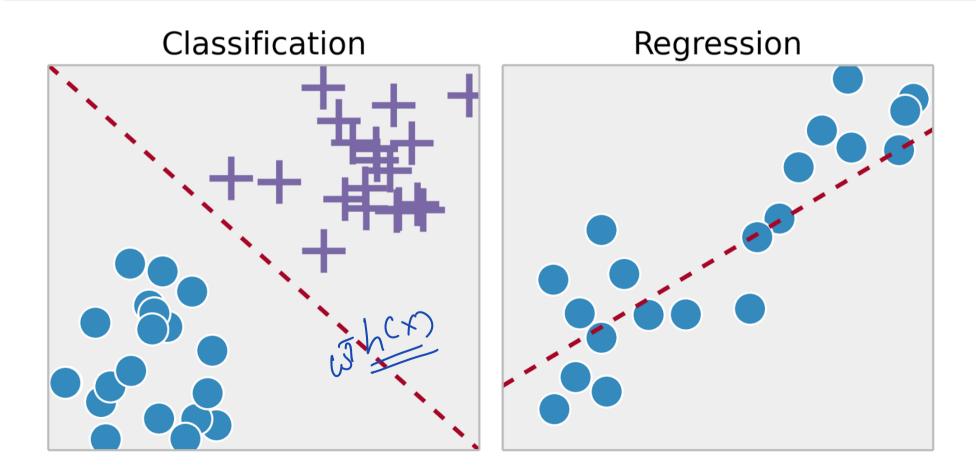
Simple difference

The target type in Regression is **numeric** whereas that in classification is **categorical**

Difference between Classification and Regression

Simple difference

The target type in Regression is **numeric** whereas that in classification is **categorical**



Binary vs Multi-class classification

With binary categories, its a binary classification problem and with multiple categories, we have a multi-class classification.

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with multiple categories, we have a multi-class classification.

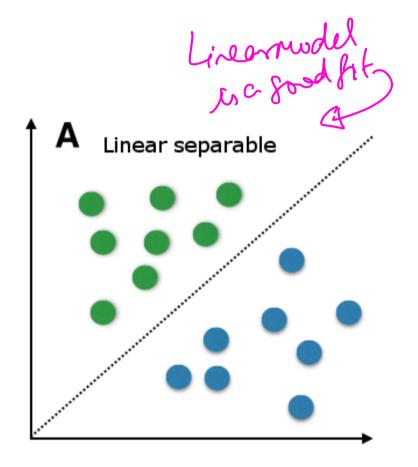
Target is called Label

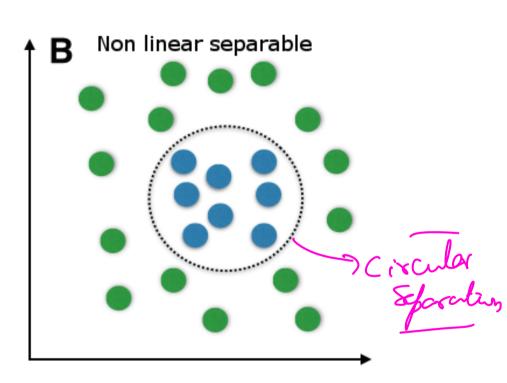
For binary classification, the convention is to label the target as positive or negative. Example: Positive for spam and negative for not-spam

Spam Classification Example

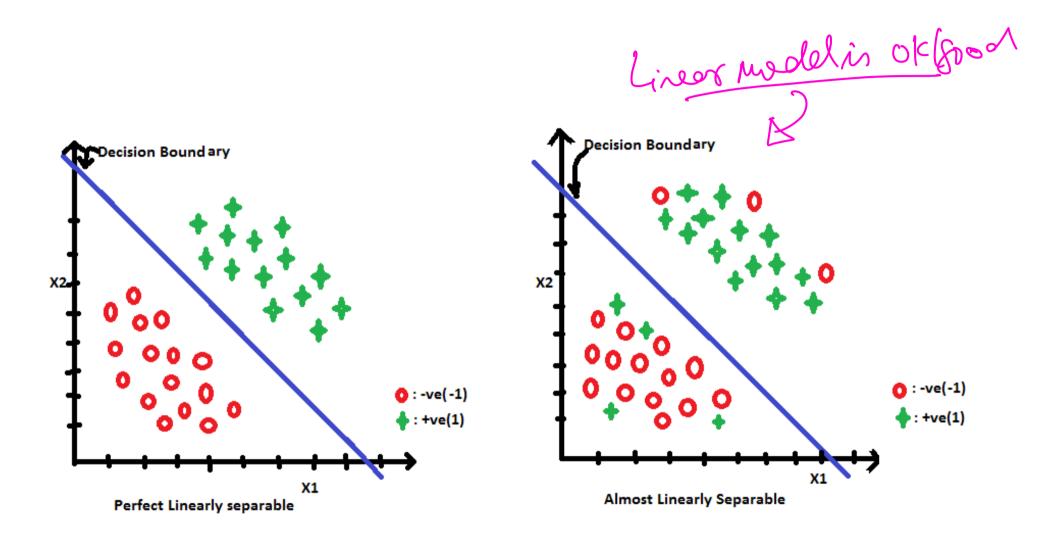
Email excerpt	Туре	Label
Could you please respond by tomorrow?	Not-spam	-1
Congratulations!!! You have been selected	Spam	+1
Looking forward to your presentation	Not-spam	-1
•••		

Linear Separability



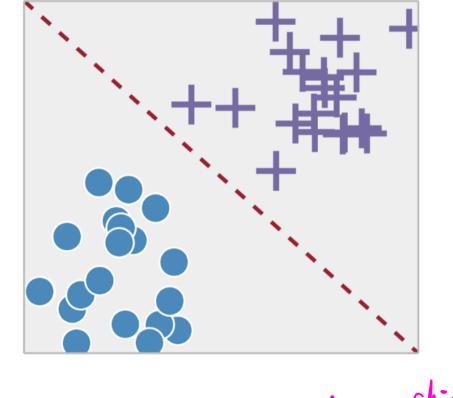


Approximate Linear Separability



Computer Vision: Fall 2022 — Lecture 7

Logistic Regression



LR fundamentals

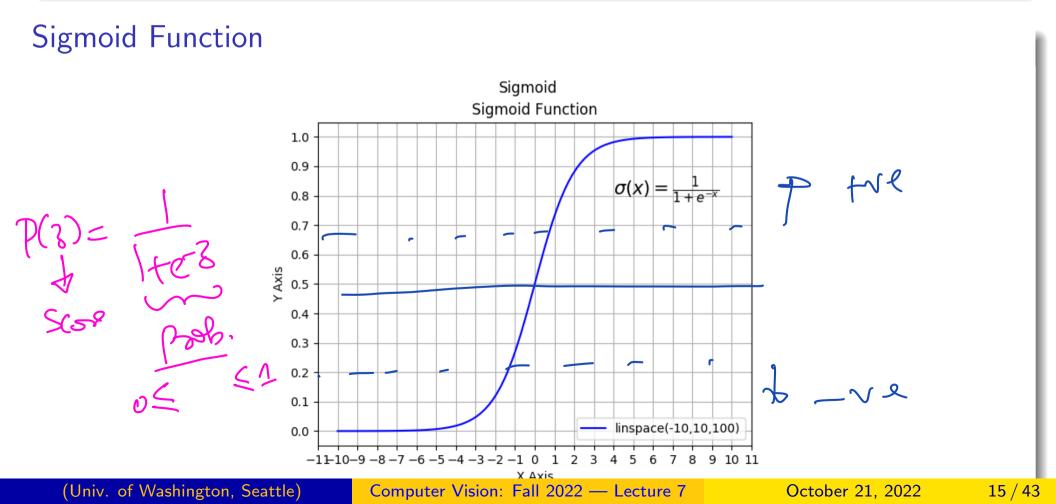
• Linear Model

- ISVM (Support vector machines)
- Want score $w^T x^i > 0$ for $y_i = +1$ and $w^T x_i < 0$ for $y_i = -1!$
- If linearly separable data, above is feasible. Else, minimize error in separability!!

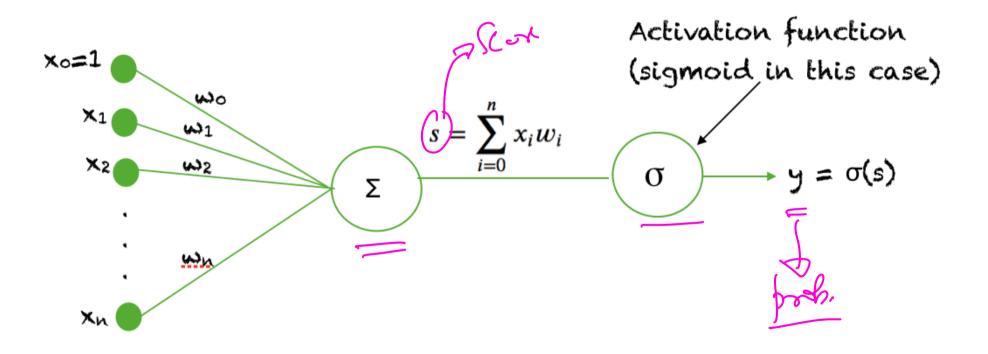
Logistic Regression

Probability for a class

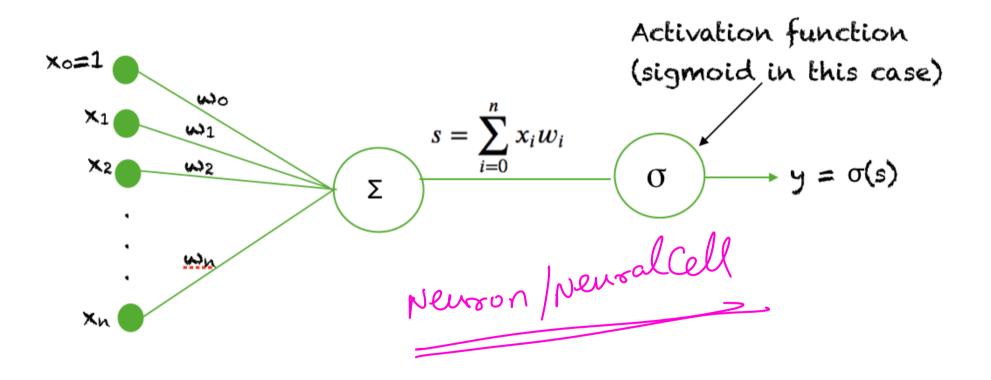
In LR, the score, $w^T x$ is converted to a probability through the sigmoid function. So we can talk about $P(\hat{y^i} = +1)$ or $P(\hat{y^i} = -1)$



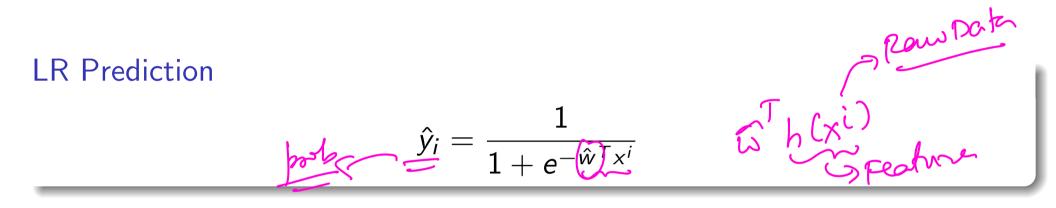
LR represented Graphically



LR vs Neural Networks/Deep Learning

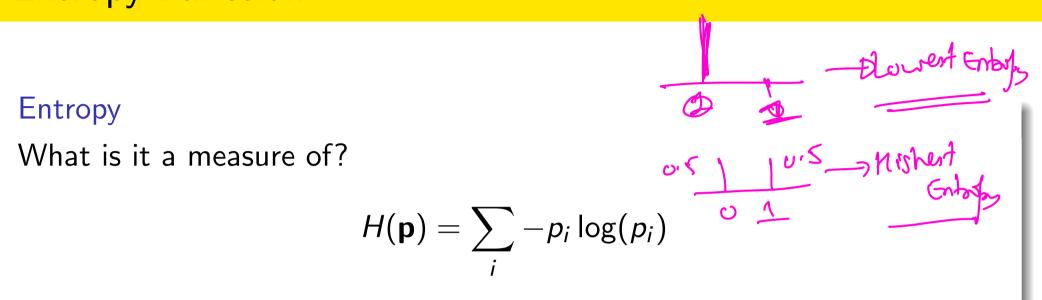


Logistic Regression



LR Loss function - a.k.a what function do you optimize to learn a classifier?

LR Loss is based on the **cross-entropy** function



where $\mathbf{p} \in K$ is a probability distribution over K objects (e.g. K classes)

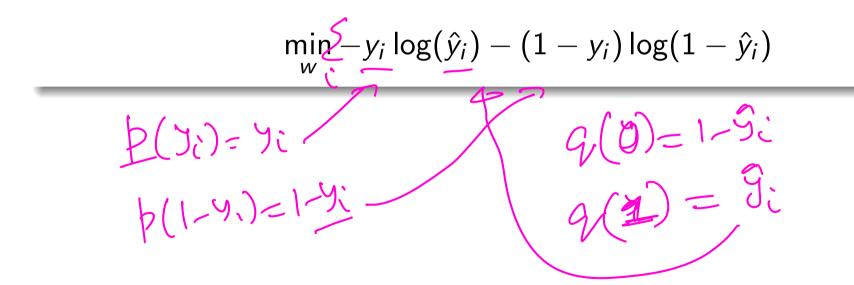
Binary Cross Entropy

Binary Cross Entropy is a measure of distance between two binary probability distributions!

$$H(p,q) = -p\log(q) - (1-p)\log(1-q)$$

LR Loss

Assume that $y_i = 0$ or $y_i = 1$ (i.e. the negative class has a label 0). Then the binary cross-entropy loss applies to LR:



LR Loss

Assume that $y_i = 0$ or $y_i = 1$ (i.e. the negative class has a label 0). Then the binary cross-entropy loss applies to LR:

$$\min_{w} - y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

Minimizing the LR loss

What distribution minimizes the LR loss function?

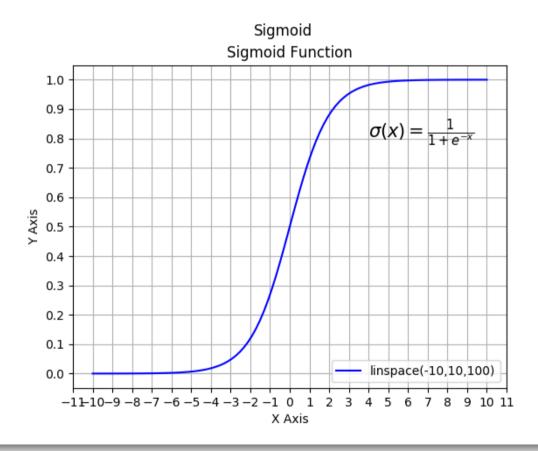
$$\begin{array}{rcl} \min & -\Im_{i} \left[-\Im_{i} \left(5i \right) - (1 - \chi_{i}) \right] \cdot S(1 - \Im_{i}) \\ \Im_{i} & \left(5i \right) = 0 \\ -\Im_{i} & + (1 - \Im_{i}) \\ \Im_{i} & 1 - \Im_{i} \\ \end{array}$$

(Univ. of Washington, Seattle)

Computer Vision: Fall 2022 — Lecture 7

Score to a Probability

Sigmoid Function



Logistic Regression || Probabilistically Speaking

(Bedichun)

Probability of a class

 $P(\hat{y_i} = 1) = \frac{1}{1 + e^{-\hat{w}^T \times i}}$

ICE #1 (2 mins)

Handling the math

Let $P(\hat{y}_i = 1) = \frac{1}{1 + e^{-\hat{w}^T \times i}}$. What's the log probability of $P(\hat{y}_i = 0)$? (Working out the math on paper is recommended here!)

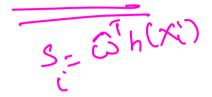
a)
$$\frac{e^{-\hat{w}^{T}x^{i}}}{1+e^{-\hat{w}^{T}x^{i}}}$$

b)
$$\log\left(\frac{e^{-\hat{w}^{T}x^{i}}}{1+e^{-\hat{w}^{T}x^{i}}}\right)$$

c)
$$\log\left(\frac{1}{1+e^{\hat{w}^{T}x^{i}}}\right)$$

d)
$$\log\left(\frac{1}{1+e^{-\hat{w}^{T}x^{i}}}\right)$$

Uses a linear model just like Linear Regression.



- Uses a linear model just like Linear Regression.
- Assumes linear separability or approximate linear separability.

- Uses a linear model just like Linear Regression.
- Assumes linear separability or approximate linear separability.

Solution Score For LR,
$$\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$$
. For LR, $\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$

- Uses a linear model just like Linear Regression.
- Assumes linear separability or approximate linear separability.
- 3 For linear regression, $\hat{y}_i = \hat{w}^T x^i$. For LR, $\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$
- Linear regression predicts numeric values that can range in $(-\infty, \infty)$. Logistic Regression predicts a probability of a class that ranges between [0, 1].

- Uses a linear model just like Linear Regression.
- Assumes linear separability or approximate linear separability.
- 3 For linear regression, $\hat{y}_i = \hat{w}^T x^i$. For LR, $\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$
- Linear regression predicts numeric values that can range in $(-\infty, \infty)$. Logistic Regression predicts a probability of a class that ranges between [0, 1].
- Logistic Regression uses the Sigmoid or S-shaped function to go from a score to a probability!

- Uses a linear model just like Linear Regression.
- Assumes linear separability or approximate linear separability.
- **3** For linear regression, $\hat{y}_i = \hat{w}^T x^i$. For LR, $\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$
- Linear regression predicts numeric values that can range in $(-\infty, \infty)$. Logistic Regression predicts a probability of a class that ranges between [0, 1].
- Logistic Regression uses the Sigmoid or S-shaped function to go from a score to a probability!
- Logistic Regression uses the log-loss of cross-entropy loss whereas Linear Regression uses the quadratic loss $\|\chi_0 - \chi\|_2^2$ $\|\chi_0 - \chi\|_2^2$

- Uses a linear model just like Linear Regression.
- Assumes linear separability or approximate linear separability.
- 3 For linear regression, $\hat{y}_i = \hat{w}^T x^i$. For LR, $\hat{y}_i = \frac{1}{1+e^{-\hat{w}^T x^i}}$
- Linear regression predicts numeric values that can range in $(-\infty, \infty)$. Logistic Regression predicts a probability of a class that ranges between [0, 1].
- Logistic Regression uses the Sigmoid or S-shaped function to go from a score to a probability!
- Logistic Regression uses the log-loss or cross-entropy loss whereas Linear Regression uses the quadratic loss
- Logistic Regression loss can be derived as a MLE So its well grounded in statistics.

ICE #2

Let's say you own an email server and want to provide a service to your email customers to help sort their emails into spam vs not-spam. So you go ahead and build a spam classifier on a training data set. Your data set has 100 spam emails and 900 non-spam emails. You notice that your classifier has 90% accuracy on the training data set and also your validation data set. Should you be happy with your classifier?

- Yes
- No
- Maybe!
- Something's fishy!

Evaluating classifiers

Class imbalance

The above data set is an example of class imbalance. What can go wrong here?

Class imbalance

The above data set is an example of class imbalance. What can go wrong here?

Better metric than accuracy

Consider the confusion matrix for above Spam classification example

95%-

with the trivial classifier (predict everything as non-spam).

	Predicted Positive	Predicted Negatives	
Positives	0	100	Low (Spen)
Negatives	0	900	900 (Notspan)

Consider the confusion matrix for above Spam classification example with the trivial classifier (predict everything as non-spam).

	Predicted Positive	Predicted Negatives
Positives	0	100
Negatives	0	900

Consider the confusion matrix for above Spam classification example with the trivial classifier (predict everything as non-spam).

	Predicted Positive	Predicted Negatives
Positives	0	100
Negatives	0	900

Better metric than accuracy

Accurcay is how many data points the classifier got right divided by the total data points. What's accuracy here?

27 / 43

Consider the confusion matrix for above Spam classification example with the trivial classifier (predict everything as non-spam).

	Predicted Positive	Predicted Negatives
Positives (P)	0	100
Negatives (N)	0	900

Consider the confusion matrix for above Spam classification example with the trivial classifier (predict everything as non-spam).

	Predicted Positive	Predicted Negatives
Positives (P)	0	100
Negatives (N)	0	900

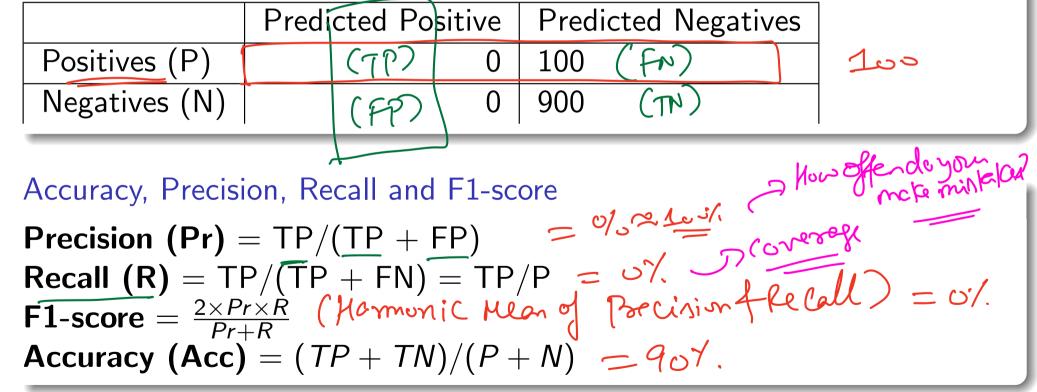
Accuracy, Precision, Recall and F1-score

	Predicted Positive	Predicted Negatives
Positives (P)	TP	EN X
Negatives (N)	×₽ ×	TN

Consider the confusion matrix for above Spam classification example with the trivial classifier (predict everything as non-spam).

	Predicted Positive	Predicted Negatives
Positives (P)	0	100
Negatives (N)	0	900

Consider the confusion matrix for above Spam classification example with the trivial classifier (predict everything as non-spam).



More Confusion!

Let's say we computed a **Confusion Matrix** for another Spam Classifier

on a different data set and we obtained:

	Predicted Positive	Predicted Negatives	
Positives (P)	50	50	$[\mathcal{N}]$
Negatives (R)	100	400	SUN

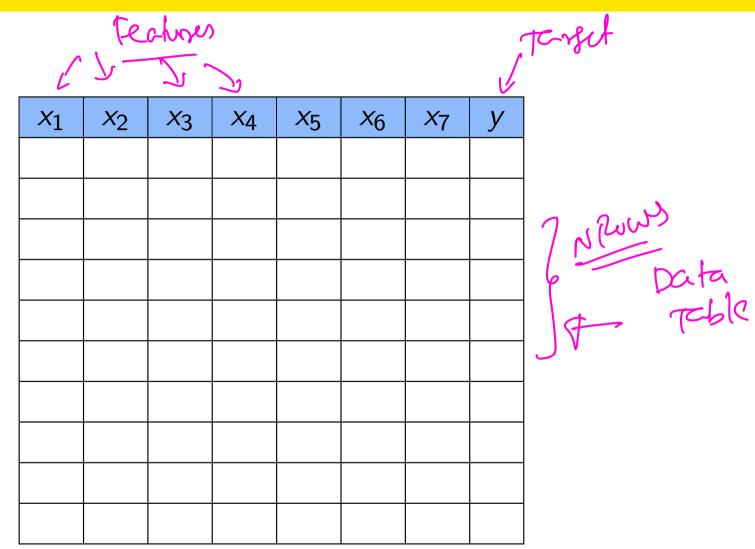
Metrics!

Accuracy, Pr, R and F1 are as follows:

- **(**) 75%, 0.2, 0.5, 0.285
- **0** 80%, 0.3, 0.4, 0.285
- **3** 80%, 0.5, 0.3, 0.1875
- \bigcirc 75%, 0.3, 0.5, 0.1875

ACC = TP+TN JF (= HM (Pr/P) Total JF (= HM (Pr/P) Pr = TP TPHEP K = TP (AUC) TP+FN

Training the Binary Classification Model



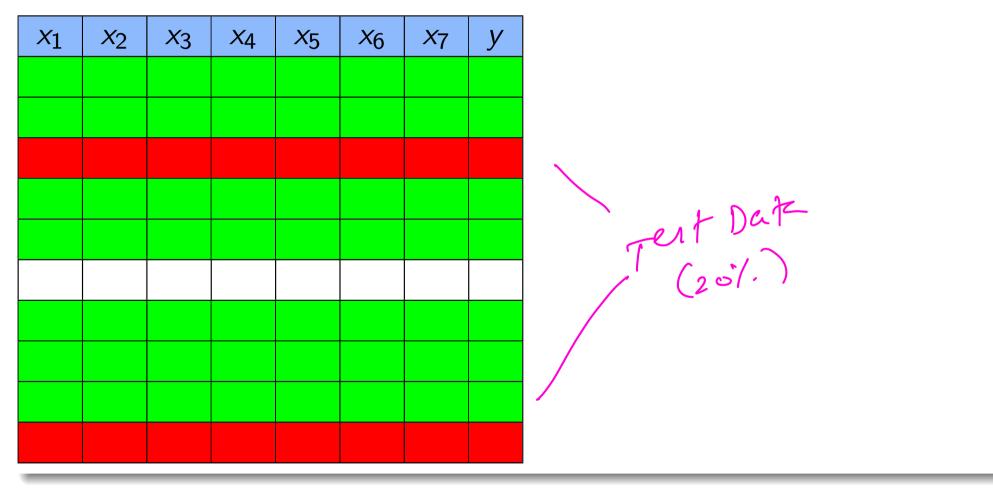
Example: 70 : 10 : 20 Train-Val-Test data split

Choose 70% train data at random y X_3 X_5 X_6 X_1 X2 *X*4 X_7 7 2000 (70%)

(Univ. of Washington, Seattle)

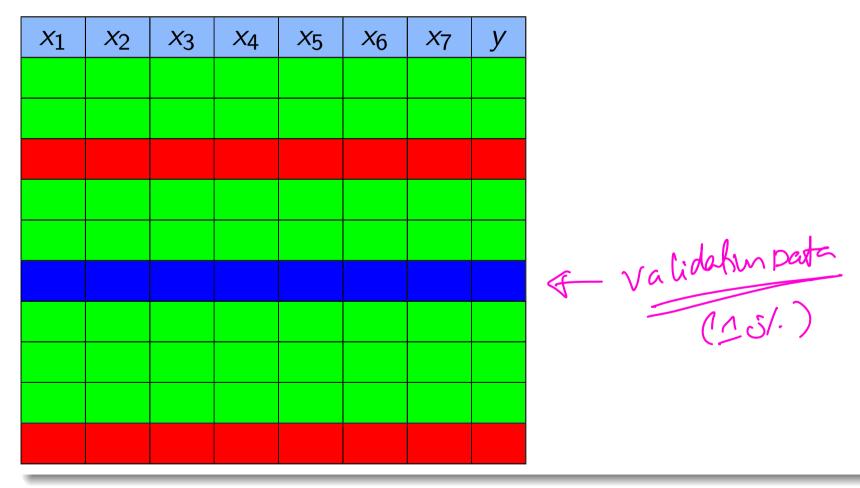
Example: 70 : 10 : 20 Train-Val-Test data split

Add 20% test data at random



Example: 70 : 10 : 20 Train-Val-Test data split

Remainder becomes validation data



Why Split Data into Train/Validation/Test ?

Training Dataset (Usually 70%)

We train on the training dataset - Learning from the data happens here.

Training Dataset (Usually 70%)

We train on the training dataset - Learning from the data happens here.

Test Dataset (Usually 20%)

We evaluate our model on the test data set. Test data mimicks "unseen" data - So we don't bias our evaluation on data we have seen before.

Training Dataset (Usually 70%)

We train on the training dataset - Learning from the data happens here.

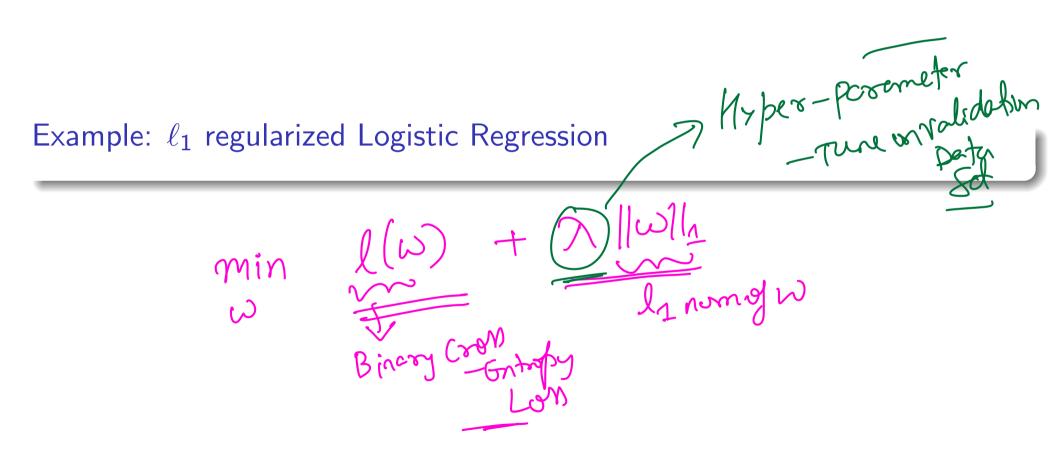
Test Dataset (Usually 20%)

We evaluate our model on the test data set. Test data mimicks "unseen" data - So we don't bias our evaluation on data we have seen before.

Validation Dataset (Usually 10%)

We tune our hyper-parameters on the validation data set - So we get the best performing model on the validation set, which can then be tested on the test data set.

Why Split Data into Train/Validation/Test ?



High Accuracy

You trained your favorite Image Classifier model to differentiate cat images from dog images and obtained a high precision and also high recall on your training data set. Does this mean your model is:

- Performing well
- 2 Not performing well
- Likely performing well but needs checking
- Likely not performing well but needs checking

The phenomenon of Overfitting

Overfitting

Overfitting is when your model performs great on training data but doesn't match up on test data. To account for overfitting, we also have a validation data set.

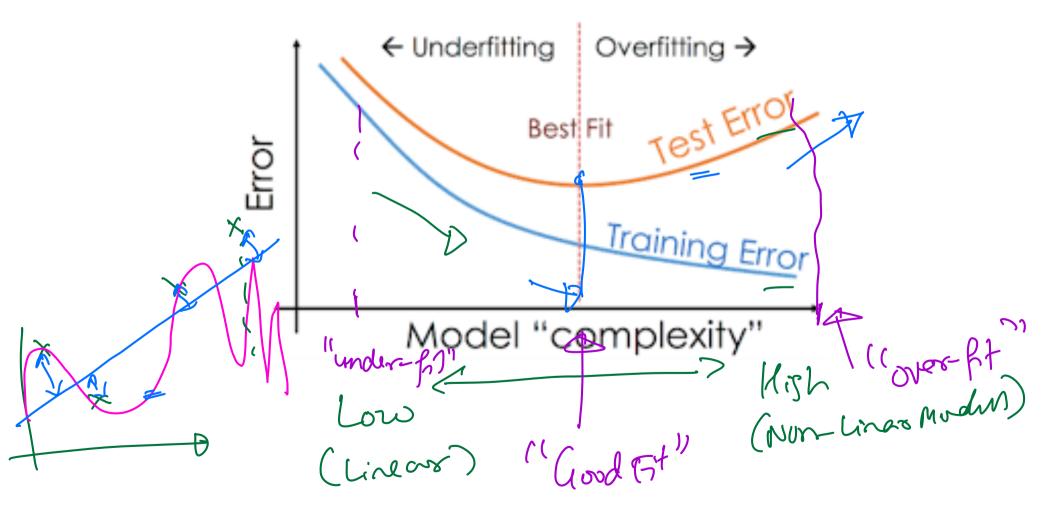
Overfitting

Overfitting is when your model performs great on training data but doesn't match up on test data. To account for overfitting, we also have a validation data set.

Overfitting Example

Your data set for classification of images has all roses red and all jasmines in yellow. In test data, you see a yellow rose and your model predicts it's a jasmine! Here, the model has overfit to the color yellow. This is also an issue with data coverage. In overfitting, the training error is low but test error is way higher. So data augmentation and data coverage can cover for issues like this!

The figure to remember for over-fitting!



39 / 43

ICE #5

Image Classifier

Consider that you have an image classifier model that takes a raw image as input and identifies if there is a cat present in the image or not. The image size is 500×500 pixels and the size of your training data is 10,000 images with their labels (cat or no cat). You decide to use a logistic regression model with a parameter corresponding to each pixel value. Is this model likely to:

- Under-fit
- Over-fit
- Just fit
- 4 No fit

Computer Vision: Fall 2022 — Lecture 7

• Idea is that there maybe many solutions that fit the data - So pick the solution wisely!

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!
- ICE #0: Find a solution for $1^T w = 1$ where $w \in^2$.

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!
- ICE #0: Find a solution for $1^T w = 1$ where $w \in^2$.
- Unique solution when N > d and when X has full rank!

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!
- ICE #0: Find a solution for $1^T w = 1$ where $w \in^2$.
- Unique solution when N > d and when X has full rank!
- Over-fitting happens when number of data points comparable to the number of attributes/features (order)

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!
- ICE #0: Find a solution for $1^T w = 1$ where $w \in^2$.
- Unique solution when N > d and when X has full rank!
- Over-fitting happens when number of data points comparable to the number of attributes/features (order)
- Solution A to overfitting: Increase number of examples so that N >> d

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!
- ICE #0: Find a solution for $1^T w = 1$ where $w \in^2$.
- Unique solution when N > d and when X has full rank!
- Over-fitting happens when number of data points comparable to the number of attributes/features (order)
- Solution A to overfitting: Increase number of examples so that N >> d
- Solution B: Decrease number of features so that d << N

- Idea is that there maybe many solutions that fit the data So pick the solution wisely!
- Consider the linear system Xw = y. This system is under-determined when N < d (number of examples i feature dimension)
- Infinitely many solutions when N < d!
- ICE #0: Find a solution for $1^T w = 1$ where $w \in^2$.
- Unique solution when N > d and when X has full rank!
- Over-fitting happens when number of data points comparable to the number of attributes/features (order)
- Solution A to overfitting: Increase number of examples so that N >> d
- Solution B: Decrease number of features so that d << N
- Solution C: Regularization! (Perhaps accomplish B as well along the way)

Regularization for classification

Large weights

Is a sign of over-fitting. With large weights - Small changes in feature value can throw the predictions off.

42 / 43

Regularization for classification

Large weights

Is a sign of over-fitting. With large weights - Small changes in feature value can throw the predictions off.

I_2 Regularization

Regularized loss (objective function):

 $\min_{w} I(w) + \lambda \|w\|_2^2$

Regularization for classification

Large weights

Is a sign of over-fitting. With large weights - Small changes in feature value can throw the predictions off.

I_2 Regularization

Regularized loss (objective function):

 $\min_{w} I(w) + \lambda \|w\|_2^2$

I_1 Regularization

Regularized loss (objective function):

$$\min_{w} I(w) + \lambda \|w\|_1$$

Computer Vision: Fall 2022 — Lecture 7

- Supervised Learning and Binary Classification
- 2 Logistic Regression
- Metrics for measuring goodness of a classifier
- Confusion Matrix