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Check-In

1 How was Assignment 3?

2 Next Assignment: Mini-Project

3 Other thoughts/questions?
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Mini-Project

Multi-class classification: On Fashion MNIST data set. Given an
image - Pick the appropriate class for it.

Deliverables: You have to submit a Jupyter/IPython notebook file
and report as part of your submission. You can use the template
notebook given and add your solutions to it.

Team Work: You can work in a team of 2. Pick your team mate for
this project - When you make your report submission, you are
expected to breakdown the contribution of each team member.
Ensure that both team members get to work and test the Neural
Network models.

Report: The report should be in pdf format and have all images,
plots and metrics added in it. Feel free to use either latex or word for
creating it. You are required to answer all of the conceptual questions
in the write up below, and show your learnings and insights.
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Mini-Project

You may discuss/brainstorm ideas to solve the assignment with peers
- However, your submission should be your own and show your code
implementation.

Kaggle Contest: There is a Kaggle competition as well for this
assignment, submit your predictions on the “held out” test data set
for a fun peer learning experience!
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Today

1 Neural Networks/Deep Learning

2 Back propogation

3 Overfitting in Deep Learning
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Computer Vision Topics

1 Image Processing using convolutions

2 Image De-noising

3 Image Smoothing

4 Image Clustering

5 Image Classification

6 Object Detection

7 Semantic Segmentation

8 Instance Segmentation (maybe)

9 Image Embeddings

10 Image to Text

11 Image Captioning

12 Text to Image (high-level)
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Introduction to Deep Learning

Deep Learning

1 Lot of buzz around Deep Learning in the past decade!

2 Deep Learning refers to Neural Networks that is a loose
approximation of how the brain works
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Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization - What’s an example application for this?

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots!

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 10 / 60



Email auto-complete
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Image to Text!
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Deep Learning vs Neural Networks!
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Build up to NN/Deep Learning

1 Perceptron - Most simplest neural representation

2 Logistic Regression

3 Multi-layer perceptron (MLP)

4 NN and Deep Learning
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Perceptron
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Perceptron
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ICE #1

Perceptron vs Logistic Regression?

What’s the di↵erence between the Perceptron architecture and Logistic
Regression Model we looked at previously?

1 They are both the same

2 Perceptron is a non-linear model while Logistic Regression is a linear
model

3 Perceptron and Logistic Regression di↵er in the activation function
that is used

4 Perceptron leads to a non-convex loss function while Logistic
Regression yields a convex loss function
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OR and AND Functions
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Learning XOR
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XOR through Multi-layer perceptron
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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2 Layer Neural Network
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Perceptron to Logistic Regression
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Choices for Non-Linear Activation Function
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RELU vs Leaky RELU
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Computer vision before deep learning
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Computer vision after deep learning
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Feed-forward Deep Learning Architecture Example
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Feed-forward Deep Learning Architecture Example
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Other Neural Network Architectures
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Hyper-parameters in Deep Learning

ICE #2: Which of the following is not a hyper-parameter in deep learning?

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 None of the above

5 All of the above
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Hyper-parameters in Deep Learning

Hyper-parameters

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 Type of non-linear activation function used

5 Anything else?
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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ICE #3

Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has
1000 neurons. Let the input layer be raw pixels from a 100x100 image and
the output layer has 10 dimensions, let’s say for a 10 class image
classification example. How many total parameters exist in the DNN
model?

1 10 million parameters

2 11 million parameters

3 12 million parameters

4 13 million parameters
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Over-fitting in DNNs

How to handle over-fitting in DNNs

1 A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

2 Weight regularization can help - `1, `2
3 More common over-fitting strategy for DL?

4 Dropouts!

5 Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How’s this di↵erent from
regular validation we were doing earlier??

6 Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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Taking care of Over-fitting: Dropouts
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Good vs Bad Local minima
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Algorithmic foundations to Machine Learning

Underlying Engine behind ML Training

(Mini-batch) Stochastic Gradient Descent Almost every model
and problem-space in ML uses SGD of some kind - Clustering, Regression,
Deep Learning, Computer Vision and NLP to name a few. Almost every
algorithm in every library - Scikit-learn, Keras, Pytorch, etc uses
mini-batch SGD under the hood.
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So what is Gradient Descent?

Fundamentally

Take a convex/non-convex function, f . GD allows you to find a local
optimum to f .

Why is this important?

Consider the Linear Regression problem. ŵ is a local optimum to the
function f (w) = 1

2
kXw � yk2

2
+ �kwk2

2
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function f (w) = 1

2
kXw � yk2

2
+ �kwk2

2

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 42 / 60



Negative Gradient helps you view the direction of descent
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Gradient Descent

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best ŵ
that does that.

1 Initialize w = w0 (maybe randomize)

2 Gradient Descent w  w � lr ⇤ rL(w)

3 Iterate Repeat step 2 until w converges, i.e.

kwk+1 � wkk/kwkk  10�3

(Univ. of Washington, Seattle) Computer Vision: Fall 2022 — Lecture 8 October 27, 2022 44 / 60



Gradient Descent

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best ŵ
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ICE #4

Derivative (1 min)

Find the derivative of w2

a) 2w

b) w

c) 0.5w

d) 0
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ICE #5

Gradient of Ridge Regularizer (2 mins)

Find the gradient of the regularization function, R(w) = �kwk2
2
. I.e.

obtain the expression for, rwR(w)?

a) 2�kwk2
b) �kwk2w
c) 2�w

d) 2�kwk2w
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GD in one dimension
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Loss function in 2 dimensions
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Gradient Descent Properties

1 Gradient Descent converges to a local minimum

2 If L is a convex function, all local minima become a global minima!

3 Wherever we start, gradient descent usually finds a local minima
closest to the start.
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E↵ect of Learning Rate
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SGD behavior in search space
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SGD in practice - mini-batch SGD!

mini-batch SGD

Let L(w) =
PN

i=1
Li (w) where Li is a function of only the ith data point

(xi , yi ) and parameter w . Let B be the number of batches and k be the
batch size.

1 Initialize w = w0 (randomize)

Pick a batch of k data points at
random between 1 and N: i1, i2, . . . , ik !

2 Gradient Descent wk+1  wk � lr ⇤
Pk

j=1
rwLij (w

k)

3 Iterate Repeat step 2 and 3 until w converges, i.e.

kwk+1 � wkk/kwkk  10�3
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GD behavior in the search space
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GD vs Mini-batch convergence behavior
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GD vs mini-batch SGD

Factor GD Mini-batch SGD
Data All per iteration Mini-batch (usually 128 or 256)

Randomness Deterministic Stochastic
Error reduction Monotonic Stochastic
Computation High Low

Memory big data Intractable Tractable
Convergence Low relative error Few “passes” on data

Local Minima traps Yes No
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Forward Propagation vs Back-propagation in NN
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Back Propagation explained
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ICE #6

Back Prop

How is back-prop related to Gradient Descent?

1 Back-propagation is an alternative to Gradient Descent for Neural
Networks

2 Back-propagation comptues the gradient that can then be used in
gradient descent

3 Back-prop is the same as gradient descent for neural networks

4 Back-prop is a di↵erent concept from Gradient Descent
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Mini-Project Pointers

1 Form a team of 2 (today if you can!) Share your team on the
spreadsheet in discord

2 Play with the architecture details in your modeling process. Start
simple and add more layers, more neurons per layer if it’s help your
validation metrics. Hyper-parameters are tuned on validation set

3 Two Deadlines for Mini-Project: First one is November 6th as a
check-point with deliverables including baseline and your first NN
model. Second includes full report, best Kaggle submission, all
metrics and CNN model that is due November 13th.

4 Will work with PyTorch for this Mini-Project - Get yourself familiar
with tutorials on this (Will be covered in quiz section as well)
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Summary

1 Introduction to Neural Networks

2 Neural Network Architecture and its components

3 Backpropagation in Neural Networks

4 Overfitting in Neural Networks
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