EEP 596: LLMs: From Transformers to GPT || Lecture 13 (Part 1) Dr. Karthik Mohan

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by Goodfellow and Bengio et al Bengio et al Deep Learning History

Embeddings SBERT and its usefulness SBert Details Instacart Search Relevance Instacart Auto-Complete

Attention

Illustration of attention mechanism

Prompt Engineering Prompt Design and Engineering: Introduction and Advanced Methods

Retrieval Augmented Generation (RAG) Toolformer RAG Toolformer explained

Misc GenAl references Time-Aware Language Models as Temporal Knowledge Bases Stable Diffusion Oiffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion The Illustrated Stable Diffusion

Previous Lecture

- Toolformer
- Introduction to Stable Diffusion

This Lecture

Stable Diffusion model
Understanding Stable Diffusion

Stable Diffusion Explained

 Based on the concept of "de-noising auto encoders" and the use of text prompt to guide the de-noising

TUdoy PART?

• Stable diffusion is also trained to successfully de-noise and increase the resolution of the image using text guidance

Auto Encoders

Deep Auto Encoders

PCA vs Auto-Encoders

PCA vs Auto Encoder

Which of the following statements are true ?

- Both PCA and Auto Encoders serve the purpose of dimensionality reduction
- They are both linear models but one uses a neural nets architecture and the other is based on projections
- x ◎ PCA is robust to outliers while Auto Encoders are not
 - Auto Encoders can compress images better than PCA

AutoEncoders and Dimensionality Reduction

Visualization Performance Auto Encoder Reference Paper

.] (Take a book on yours over!)

AutoEncoders and Dimensionality Reduction

AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction

Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Over the second seco

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- Anything else?

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- Anything else?
- Auto Encoders can learn convolutional layers instead of dense layers -Better for images! More flexibility!!

ICE #2: Loss Function for Auto-Encoders

Removing obstacles in images

Removing obstacles in images

Coloring Images

"Coloring" Auto Encoder

Gray Image	Vanilla Autoencoder	Merge Model (YCbCr)	Merge Model (LAB)	Original
		0 5 5 10 125 130 155 200 5 5 100 150 200	0 50 75 100 0 50 100 50 100 150 200	

Details

Just like an Auto Encoder

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

- Perceptron
- 2 Auto Encoder
- Oe-noising Auto Encoder
- 4 K-means++
- Sone of the above
- All of the above

5 mins

Discuss in your groups what are some real-world applications of any or many of the Auto Encoder Architectures we discussed so far you can think of in your area of work or in a standard context e.g. images.

Lecture 13 - Part 2

- Use of De-noising Auto-Encoders for Stable Diffusion
- Architecture behind Stable-Diffusion
- Operation of the standing stable-diffusion process

text 2 Inall