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Deep Learning and Transformers References

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by
Goodfellow and Bengio et al Bengio et al
Deep Learning History

Embeddings

SBERT and its usefulness
SBert Details

Instacart Search Relevance
Instacart Auto-Complete

Attention

[llustration of attention mechanism J
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://arxiv.org/pdf/1908.10084.pdf
https://www.sbert.net/
https://www.instacart.com/company/how-its-made/how-instacart-uses-embeddings-to-improve-search-relevance/
https://www.instacart.com/company/how-its-made/how-instacart-uses-machine-learning-driven-autocomplete-to-help-people-fill-their-carts/
https://jalammar.github.io/illustrated-transformer/

Generative Al References

Prompt Engineering
Prompt Design and Engineering: Introduction and Advanced Methods J

Retrieval Augmented Generation (RAG)

Toolformer
RAG Toolformer explained

Misc GenAl references
Time-Aware Language Models as Temporal Knowledge Bases J
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https://arxiv.org/abs/2401.14423
https://arxiv.org/pdf/2302.04761.pdf
https://arxiv.org/abs/2401.14423
https://vinija.ai/models/Toolformer/
https://arxiv.org/pdf/2106.15110.pdf

Generative Al references

Stable Diffusion

Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
The lllustrated Stable Diffusion
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https://arxiv.org/pdf/2305.03509.pdf
https://jalammar.github.io/illustrated-stable-diffusion/

Previous Lecture

@ Toolformer

@ Introduction to Stable Diffusion
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his Lecture

@ Stable Diffusion model

@ Understanding Stable Diffusion
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I
Stable Diffusion Explained

—

b o

— <

@ Based on the concept o @e—noising auto encoderi"?and the use of
text prompt to guide thede=rroising J

@ Stable diffusion is also trained to successfully de-noise and increase
the resolution of the image using text guidance
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Auto Encoders

hw,p(X) .
Gpordt
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.
Deep Auto Encoders

A pn?

/‘“’

Input

Encoder
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PCA vs Auto-Encoders
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I
ICE #1

PCA vs Auto Encoder
Which of the following statements are true ?

© Both PCA and Auto Encoders serve the purpose of dimensionality
reduction
© They are both linear models but one uses a neural nets architecture
A and the other is based on projections

Y © PCA is robust to outliers while Auto Encoders are not

@ Auto Encoders can compress images better than PCA
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AutoEncoders and Dimensionality Reduction

Visualization Performance

Auto Encoder Reference Paper
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https://www.cs.toronto.edu/~hinton/science.pdf

AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimension Reduction G . ®oT
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https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

—
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non- linearity
in the « embeddings

—
—
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© Anything else?

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT February 20, 2024 15/26



AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© Anything else?
© Auto Encoders can learn convolutional Ia_y‘ers instead of dense layers -

Better for images! More flexibility!!

—_—
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I
ICE #2: Loss Function for Auto-Encoders
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Removing obstacles in images
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Removing obstacles in images
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Coloring Images

« (ol b—:r(gm Mo Tntadt?

Gray Image

Vanilla Autoencoder

Merge Model (YCbCr)

Merge Model (LAB)

Original

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

February 20, 2024

19 /26



De-noising Auto Encoders

Encoder Decoder
——
Original W . Code Out
Image Input

—
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De-noising Auto Encoders
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De-noising Auto Encoders

(Univ. of Washington, Seattle)
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Compressed Image
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De-noising Auto Encoders

Detalls
@ Just like an Auto Encoder

r 4

-
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De-noising Auto Encoders

Details
@ Just like an Auto Encoder

@ Difference: Noise is injected in the inpu@ut output is a
S —

clean data point.

—
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De-noising Auto Encoders

Detalls

@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!
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De-noising Auto Encoders

Details
@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!

@ Esp. useful for a category of objects or images (e.g. digit recognition
or face recognition, etc)
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ICE 43

Unsupervised Learning
Which of these is NOT an example of unsupervised learning?
© Perceptron
© Auto Encoder
© De-noising Auto Encoder
Q K-means++
© None of the above
O All of the above
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.
Breakouts Time #1

5 mins

Discuss in your groups what are some real-world applications of any or
many of the Auto Encoder Architectures we discussed so far you can thin
of in your area of work or in a standard context e.g. images.

7
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e
Lecture 13 - Part 2

Q@ Use ofﬁ);\oising Auto-Encoders for Stable Diffusion.
@ Architecture behind Stable-Diffusion iy

© Demo for understanding stable-diffusion process

— —QVQV"V .
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