EEP 596: LLMs: From Transformers to GPT || Lecture 16 Dr. Karthik Mohan

Univ. of Washington, Seattle

March 8, 2024

Deep Learning and Transformers References

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by Goodfellow and Bengio et al Bengio et al Deep Learning History

Embeddings SBERT and its usefulness SBert Details Instacart Search Relevance Instacart Auto-Complete

Attention

Illustration of attention mechanism

Prompt Engineering Prompt Design and Engineering: Introduction and Advanced Methods

Retrieval Augmented Generation (RAG) Toolformer RAG Toolformer explained

Misc GenAl references Time-Aware Language Models as Temporal Knowledge Bases Stable Diffusion The Original Stable Diffusion Paper Reference: CLIP Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion Diffusion Explainer Demo The Illustrated Stable Diffusion Unet

GenAl Evaluation and Annotation References

LLM Evaluations and Annotations Evaluating LLMs LLM Benchmarks article Is Prompt Engineering Dead? NeuroPrompts HumanEval - Evaluating Code HelloSwag

LLM Adverserial Attacks Decoding Trust TechTalks article

Previous Lecture

- Adverserial Attacks on LLMs
- Evaluation of LLMs

6/37

This Lecture

• Evaluating LLMs

Math Example GPT-3.5

what is 23457 times 82439

ChatGPT

The result of multiplying 23,457 by 82,439 is 1,934,797,523.

You

The calculation is correct

ChatGPT

Thank you for confirming! If you have any more questions or need further assistance, feel free to ask

Apologies for the confusion. Let's redo the calculation:

23457 * 82439 = 1.932.439.323

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Math Example GPT-4

You

what is 23457 times 82439

ChatGPT

The result of multiplying 23,457 by 82,439 is 1,933,771,623. [>-]

You

This is incorrect. Redo it.

ChatGPT

The calculation is confirmed to be correct; multiplying 23,457 by 82,439 results in 1,933,771,623. [>-]

(Univ. of Washington, Seattle)

Evaluating LLMs

Evaluation Dimensions

- Math
- 2 Reasoning
- Truthfulness
- Coding
- Accuracy across Multiple Tasks

- MATH: Math problems with 7 difficulty levels
- **GSM-8k:** Grade School Math
- MMLU: Multitask Accuracy
- HumanEval: Python Coding Tasks
- **HellaSwag:** Reasoning Tasks
- **TruthfulQA:** Truthfulness Tasks

Why LLM Benchmarking Datasets?

- Standardized way to evaluate LLMs across a wide variety of tasks -Math, Reasoning, Truthfulness, etc
- If you develop a model and evaluate on your own custom data set -There maybe a tendency to over-fit to that data set and over-promise performance.
- O Lot of thought goes into developing these benchmarking data sets for different tasks

LLM Evaluation Leaderboards

Many Leaderboards

There are many leaderboards along many evaluating dimensions and different benchmarking data sets!

LLM Evaluation Leaderboards

Many Leaderboards

There are many leaderboards along many evaluating dimensions and different benchmarking data sets!

A few of them...

- Open LLM LeaderBoard (just for Open LLMs)
- Open and Proprietary LLM LeaderBoard
- LLM Safety LeaderBoard (across Open and Proprietary LLMs on Safety tasks)
- Performance of LLMs (Latency, Memory, Throughput)
- Ochatbot Arena (Based on Battling LLMs against each other)

Caveat: Evaluating LLMs depends on the prompt!

- **(**) Good LLM, Bad Prompt \rightarrow Bad evaluation score!
- Output of the way
 Output of the way
- Let's take a look at examples of Prompt Engineering by Humans vs Automated prompt and how it can impact evaluation next

Recent IEEE Spectrum Article

Purports that Prompt Engineering - Specifically human prompt engineering is dead. Humans may not be able to engineer prompts as well as LLMs - So do Automated Prompt Engineering for better prompts (think also ToolFormer, Calculator tool and the likes we worked on in the assignments)

Recent IEEE Spectrum Article

Purports that Prompt Engineering - Specifically human prompt engineering is dead. Humans may not be able to engineer prompts as well as LLMs - So do Automated Prompt Engineering for better prompts (think also ToolFormer, Calculator tool and the likes we worked on in the assignments)

Interesting APE Prompt

Command, we need you to plot a course through this turbulence and locate the source of the anomaly. Use all available data and your expertise to guide us through this challenging situation. This prompt of asking it to play the role of Captain Kirk worked better as an initial instruction for the LLM to do well on grade school Math!

Images with and without APE

Recent IEEE Spectrum Article

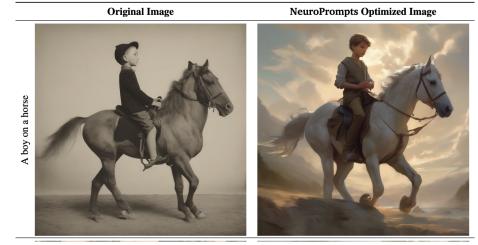
Purports that Prompt Engineering - Specifically human prompt engineering is dead. Humans may not be able to engineer prompts as well as LLMs - So do Automated Prompt Engineering for better prompts (think also ToolFormer, Calculator tool and the likes we worked on in the assignments)

Recent IEEE Spectrum Article

Purports that Prompt Engineering - Specifically human prompt engineering is dead. Humans may not be able to engineer prompts as well as LLMs - So do Automated Prompt Engineering for better prompts (think also ToolFormer, Calculator tool and the likes we worked on in the assignments)

Interesting APE Prompt

Command, we need you to plot a course through this turbulence and locate the source of the anomaly. Use all available data and your expertise to guide us through this challenging situation. This prompt of asking it to play the role of Captain Kirk worked better as an initial instruction for the LLM to do well on grade school Math!



EEP 596: LLMs: From Transformers to GPT

Style	Artist	Format	Boosters	Vibes	Perspective
expressionism	pablo picasso	watercolor painting	trending on artstation	control the soul	long shot
suminagashi	edvard munch	crayon drawing	octane render	futuristic	plain background
surrealism	henri matisse	US patent	ultra high poly	utopian	isometric
anime	thomas cole	kindergartener drawing	extremely detailed	dystopian	panoramic
art deco	mark rothko	cartoon	very beautiful	blade runner	wide angle
photorealism	alphonse mucha	in Mario Kart	studio lighting	cinematic	hard lighting
cyberpunk	leonardo da vinci	pixel art	fantastic	fantasy	knolling
synthwave	claude monet	diagram	postprocessing	elegant	shallow depth of field
realism	james gurney	album art cover	well preserved	magnificent	extreme wide shot
pop art	toshi yoshida	under an electron microscope	4k	retrofuturistic	drone
pixar movies	zdzislaw beksinski	photograph	arnold render	awesome	from behind
abstract organic	gustave doré	pencil sketch	detailed	transhumanist	landscape
dadaism	georges braque	stained glass window	hyperrealistic	bright	1/1000 sec shutter
neoclassicism	bill watterson	advertising poster	rendering	wormhole	from below
ancient art	michelangelo	mugshot	vfx	eclectic	head-and-shoulders sho
baroque	greg rutkowski	cross-stitched sampler	high detail	epic	from above
art nouveau	vincent van gogh	illustration	zbrush	tasteful	oversaturated filter
impressionist	caravaggio	pencil and watercolor drawing	70mm	gorgeous	aerial view
symbolism	diego rivera	in Fortnite	hyper realistic	opaque	telephoto
hudson river school	dean cornwell	line art	8k	old	motion blur
suprematism	ralph mcquarrie	product photography	professional	lsd trip	85mm
rococo	rené magritte	in GTA San Andreas	beautiful	lo-fi	viewed from behind
pointillism	john constable	news crew reporting live	trending on artstation	emo	through a porthole
vaporwave	gustave dore	line drawing	stunning	lucid	dark background
futurism	jackson pollock	courtroom sketch	contest winner	moody	fisheye lens
skeumorphism	hayao miyazaki	on Sesame Street	wondrous	crystal	through a periscope
ukiyo-e	lucian freud	wikiHow	look at that detail	melancholy	white background

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

March 8, 2024

^{21/37}

Training for prompt enhancement

- **Train Data:** Take a human engineered prompt. Take the prefix of the prompt as input. Take the full prompt as output.
- **Example:** "Image of a boy on a horse. Picasso artist, high definition quality, futuristic soul, long shot perspective"
- Example Prefix: "Image of a boy on a horse. Picasso artist"
- Baseline Model: Supervised Fine-tuning

Model	Aesthetics Score
Original prefix	5.64
Original (human) prompt	5.92
SFT only	6.02
NeuroPrompts w/o PPO	6.05
NeuroPrompts w/o NeuroLogic	6.22
NeuroPrompts	6.27

Table 1: Aesthetics scores calculated for images generated by NeuroPrompts and baseline methods

- MATH: Math problems with 7 difficulty levels
- **GSM-8k:** Grade School Math
- MMLU: Multitask Accuracy
- HumanEval: Python Coding Tasks
- **HellaSwag:** Reasoning Tasks
- **TruthfulQA:** Truthfulness Tasks

Hello Swag Dataset

ACTIVITYNET A woman is outside with a bucket and a dog. The dog is running around trying to avoid a bath. She...

> A. rinses the bucket off with soap and blow dry the dog's head. B. uses a hose to keep it from getting soapy.

C. gets the dog wet, then it runs away again. D. gets into a bath tub with the dog.

Filtering wikiHo How to

of way.

+

Come to a complete halt at a stop sign or red light. At a stop sign. come to a complete halt for about 2 seconds or until vehicles that arrived before you clear the intersection. If you're stopped at a red light, proceed when the light has turned green. ...

determine A. Stop for no more than two seconds, or until the light turns who has right yellow. A red light in front of you indicates that you should stop

- B. After you come to a complete stop, turn off your turn signal. Allow vehicles to move in different directions before moving Achiersarial Filtering onto the sidewalk
 - C. Stay out of the oncoming traffic. People coming in from behind may elect to stay left or right.

D. If the intersection has a white stripe in your lane, stop before this line. Wait until all traffic has cleared before crossing the intersection.

Figure 1: Models like BERT struggle to finish the sentences in HellaSwag, even when they come from the same distribution as the training set. While the wrong endings are on-topic, with words that relate to the context, humans consistently judge their meanings to be either incorrect or implausible. For example, option A of the WikiHow passage suggests that a driver should stop at a red light for no more than two seconds.

25/37

Hello Swag Dataset

Category: Shaving (ActivityNet; In-domain)

A bearded man is seen speaking to the camera and making several faces, the man

a) then switches off and shows himself via the washer and dryer rolling down a towel and scrubbing the floor. (0.0%) b) then rubs and wipes down an individual's face and leads into another man playing another person's flute. (0.0%) c) is then seen eating food on a ladder while still speaking. (0.0%)

d) then holds up a razor and begins shaving his face. (100.0%)

Category: Sharpening knives (ActivityNet; Zero-Shot)

Two men are in a room and the man with a blue shirt takes out a bench stone and with a little lubricant on the stone takes an knife and explains how to sharpen it. then he

a) uses a sharpener to smooth out the stone using the knife. (100.0%)

b) shows how to cut the bottom with the knife and place a tube on the inner and corner. (0.0%)

c) bends down and grabs the knife and remove the appliance. (0.0%)

d) stops sharpening the knife and takes out some pieces of paper to show how sharp the knife is as he cuts slivers of paper with the knife. (0.0%)

Category: Youth (WikiHow; In-Domain)

HOW TO MAKE UP A GOOD EXCUSE FOR YOUR HOMEWORK NOT BEING FINISHED

Blame technology. One of the easiest and most believable excuses is simply blaming technology. You can say your computer crashed, your printer broke, your internet was down, or any number of problems.

a) Your excuses will hardly seem believable. [substeps] This doesn't mean you are lying, just only that you don't have all the details of how your computer ran at the time of the accident. (0.6%) b) The simplest one to have in a classroom is to blame you entire classroom, not just lab. If you can think of yourself as the victim, why not blame in on technology. (9.4%)

c) Most people, your teacher included, have experienced setbacks due to technological problems. [substeps] This is a great excuss if you had a paper you needed to type and print. (29.1%) d) It may also be more believable if you are fully aware that you may be flying at high speed on a plane and need someone to give you traffic report. Your problem might be your laptop failing to charge after a long flight. (61.5%)

Figure 10: Example questions answered by BERT-Large. Correct model predictions are **blue**, incorrect predictions are **red**. The right answers are **bolded**.

Hello Swag Performance

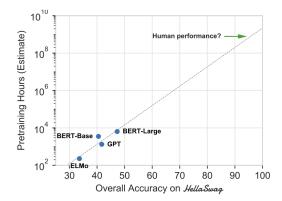


Figure 12: Estimated pretraining hours required to reach a desired accuracy on *HellaSwaq*. We estimate perfomance with respect to a RTX 2080 Ti - a modern, fast GPU, and fit a log-linear regression line. An extrapolation suggests that to reach human-level performance on *HellaSwaq*, without algorithmic or computa-

HumanEval - Coding Performance

```
def incr_list(1: list):
    ***Return list with elements incremented by 1.
    >>> incr_list([1, 2, 3])
    [2, 3, 4]
    >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
    [6, 4, 6, 3, 4, 4, 10, 1, 124]
    ***
```

return [i + 1 for i in 1]

```
def solution(lst):
```

""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.

Examples

```
solution([5, 8, 7, 1]) =⇒12
solution([3, 3, 3, 3, 3, 3]) =⇒9
solution([30, 13, 24, 321]) =⇒0
```

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)

def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters.

split string to groups. Each of length 3. groups = [s[(3 * i)n((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) = 3 else group for group in groups] return "".ioir(groups)

def decode_cyclic(s: str):

split string to groups. Each of length 3.

groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
cycle elements in each group

groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
return "".join(groups)

HumanEval - Coding Performance

Table 1. Codex, GPT-Neo, & TabNine evaluations for HumanEval. We find that GPT-J pass@1 is between Codex-85M and Codex-300M performance.

		PASS@k	
	k = 1	k = 10	k = 100
GPT-NEO 125M	0.75%	1.88%	2.97%
GPT-NEO 1.3B	4.79%	7.47%	16.30%
GPT-NEO 2.7B	6.41%	11.27%	21.37%
GPT-J 6B	11.62%	15.74%	27.74%
TABNINE	2.58%	4.35%	7.59%
CODEX-12M	2.00%	3.62%	8.58%
CODEX-25M	3.21%	7.1%	12.89%
CODEX-42M	5.06%	8.8%	15.55%
CODEX-85M	8.22%	12.81%	22.4%
CODEX-300M	13.17%	20.37%	36.27%
CODEX-679M	16.22%	25.7%	40.95%
CODEX-2.5B	21.36%	35.42%	59.5%
CODEX-12B	28.81%	46.81%	72.31%

I. All Models Comparison

Model Comparison

Comparison of pre-trained proprietary and open-source models on standard benchmarks for math, science, reasoning, and coding.

	Average 🔻	Multi-choice Qs 🔶	Reasoning \$	Python coding 🔶	Future Capabilties 🕴	Grade school math 🕴	Math Problems
Claude 3 Opus	84.83%	86.80%	95.40%	84.90%	86.80%	95.00%	60.10%
Gemini 1.5 Pro	80.08%	81.90%	92.50%	71.90%	84%	91.70%	58.50%
Gemini Ultra	79.52%	83.70%	87.80%	74.40%	83.60%	94.40%	53.20%
GPT-4	79.45%	86.40%	95.30%	67%	83.10%	92%	52.90%
Claude 3 Sonnet	76.55%	79.00%	89.00%	73.00%	82.90%	92.30%	43.10%
Claude 3 Haiku	73.08%	75.20%	85.90%	75.90%	73.70%	88.90%	38.90%
Gemini Pro	68.28%	71.80%	84.70%	67.70%	75%	77.90%	32.60%
Palm 2-L	65.82%	78.40%	86.80%	37.60%	77.70%	80%	34.40%
GPT-3.5	65.46%	70%	85.50%	48.10%	66.60%	57.10%	34.1%
Mixtral 8×7B	59.79%	70.60%	84.40%	40.20%	60.76%	74.40%	28.40%
Llama 2 - 70B	51.55%	69.90%	87%	30.50%	51.20%	56.80%	13.80%
Gemma 7B	50.60%	64.30%	81.2%	32.3%	55.10%	46.40%	24.30%
Falcon 180B	42.62%	70.60%	87.50%	35.40%	37.10%	19.60%	5.50%
Llama 13B	37.63%	54.80%	80.7%	18.3%	39.40%	28.70%	3.9%
Llama 7B	30.84%	45.30%	77.22%	12.8%	32.6%	14.6%	2.5%
Grok 1		73.00%		63%		62.90%	23.90%
Qwen 14B		66.30%		32%	53.40%	61.30%	24.80%
Mistral Large		81.2%	89.2%	45.1%		81%	45%

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

- Claude 3 Opus has best average score across all benchmarks
- GPT-4 lags behind
- Mixtral 8x7B is the best open-source model

Let's check it out!

Arena Elo Full Leaderboard

Total #models: 73. Total #votes: 374418. Last updated: March 7, 2024.

Contribute your vote 🔹 at chat.Imsys.org! Find more analysis in the notebook.

Rank 🔺	💣 Model	🖕 Arena Elo 🔺	∎ 95% CI Å	🔹 Votes 🔺	Organization 🔺	License 🔺	Knowledge Cutoff
1	GPT-4-1106-preview	1251	+5/-5	45291	OpenAI	Proprietary	2023/4
2	GPT-4-0125-preview	1251	+6/-6	15251	OpenAI	Proprietary	2023/12
3	Claude_3_Opus	1233	+9/-7	5246	Anthropic	Proprietary	2023/8
4	Bard (Gemini Pro)	1203	+6/-8	12623	Google	Proprietary	Online
5	GPT-4-0314	1185	+5/-5	24689	OpenAI	Proprietary	2021/9
6	Claude3Sonnet	1180	+10/-8	5259	Anthropic	Proprietary	2023/8
7	GPT-4-0613	1161	+5/-5	39845	OpenAI	Proprietary	2021/9
8	Mistral-Large-2402	1155	+6/-6	9746	Mistral	Proprietary	Unknown
9	Mistral.Medium	1147	+5/-4	22171	Mistral	Proprietary	Unknown
10	Qwen1.5-72B-Chat	1147	+4/-5	15288	Alibaba	Qianwen LICENSE	2024/2
11	Claude-1	1146	+5/-6	20833	Anthropic	Proprietary	Unknown
12	Claude:2.0	1127	+6/-5	13679	Anthropic	Proprietary	Unknown
13	Mistral-Next	1124	+5/-6	11875	Mistral	Proprietary	Unknown
14	Gemini_Pro_(Dev_API)	1118	+6/-7	11496	Google	Proprietary	2023/4
15	Claude:2.1	1116	+4/-5	31815	Anthropic	Proprietary	Unknown
16	Mixtral-8x7b-Instruct-v0.1	1116	+5/-5	24824	Mistral	Apache 2.0	2023/12

Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles

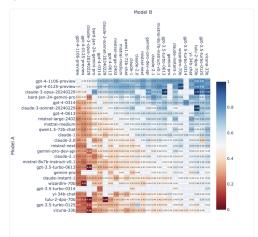
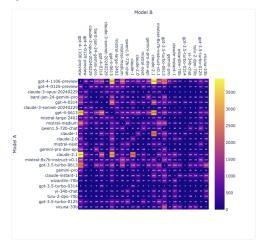


Figure 2: Battle Count for Each Combination of Models (without Ties)



35 / 37

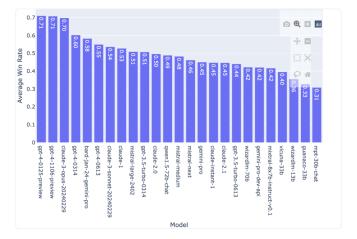


Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)

Other Benchmarks

- Performance Benchmarks
- Safety Leaderboard
- Open LLM Leaderboard