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Deep Learning Reference

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by
Goodfellow and Bengio et al Bengio et al
Deep Learning History
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/

Introduction to Deep Learning

. w7
Deep Learning —~ W”ﬂm "

© Lot of buzz around Deep Learning in the past decade and a half!
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Introduction to Deep Learning

Deep Learning
© Lot of buzz around Deep Learning in the past decade and a half!

© Deep Learning refers to Neural Networks that is a loose
approximation of how the brain works
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I
Applications of Deep Learning

Applications & m\?c’%m
@ Self-driving cars~ 1"“@‘ “;:u? ] |
) VM (LLMAD
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I
Applications of Deep Learning

Applications

Self-driving cars

Sentiment analysis

Text Summarization

Arrythmia detection - Possible assignment for this course!

Image to text generation. Caption images automatically.

©O0 0000

Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

Auto-complete sentence in Emails. How many of us use this?

Auto-complete search results.
Chat bots - Like ChatGPT /Sparrow/Anthropic, etcj L

© © 0

— /
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Email auto-complete

CINTEe

Taco Tuesday

pPCco

"l Jacqueline Bruzek x
natio

Taco Tuesday
rly A

Hey Jacqueline,
1 vite

Haven't seen you in a while and | ho
g dat
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Image to Text!

woman, crowd, cat,
[ camera, holding, purple J

A purple camera with a woman.
A woman holding a camera in a crowd. ’

A woman holding a cat. 2

#1 A woman holding a
{ camera in a crowd. ;
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S
Arrhythmia Detection

lead 11
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S
Brief History of Deep Learning

@ 1965: First deep-learning model came out in 1965 by Ivakhenko et
al. Didn't use back-propagation for training but sequential least

squares fit.
@ 1979: Earliest Convolutional Neural Network (CNN) by Fukushima
et al.

@ 1985: Earliest back-propagation in 1985 by Hinton et al

@ 1989: Application of back-prop for recognlzm&MNIST hand-written
digits at Bell labs by Yann LeCun O )

S

@ 1993: LeNet by Yann LeCun. The beginning of ths where

X could be Alex, Inception, etc

e 1997: Disﬁcoverv of recurrent Neural Nets - RNN and LSTMs in
1997 by Horchreiter and Schmidhuber.
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I
Brief History of Deep Learning

o 1997 - 2006: GPUs got faster - 1000x cofégtléaé%al speed
improvement D—%mﬂna" © -

@ 2011: Ciresan et al showed that you can train a CNN without
pre-trained weights just with good computational power.

@ 2012: Beginning of ILSVRC competition for improvin@

data set performance.

@ 2017: Transformers arrive on the scene with Vaswani et al and
begin the Language Model revolution.

@ 2020: Transformer gets applied to Vision as well and matches CNN
in performance through the Vi-Transformer.

@ 2022: ChatGPT (based on transformers) arrives on the scene and
puts Al on the world map!
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Perceptron to Deep Neural Networks/Deep Learning
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S
Logistic Regression to Deep Learning

Linear to Non-linear Models

Let’'s work through the nitty-gritties of the logistic regression model and
neural network model!

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 9, 2024 12/83




Perceptron
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Perceptron
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e
OR and AND Functions

What can a perceptrons represent?

w%’b"éo
X1 X2 X1 X2 y
W"U'{ ) 0 0 0 0 0 0
L o 0 1 1 0 1 0
o >
w")c':o-{7<’-. 1 E 1 1 0 0
winz g Qe b [ 1 [ e [ [ 1 ]
(&
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Perceptron to Logistic Regression

1

g(wo + Xj:wjxm) = 1 o (wotsS, wyxhD) 3

syl A
P mdul g
— &

w; X[/ ] =

ay

1

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 9, 2024 16 /83



Logistic Regression

p s
y aamm——
- =3
L4 -
1 «
— —p
Q 1_9
%X
LR fundamentals
@ Linear Model
e Want score w’x' >0 for yj = +1 and w'x; < 0 for y; = —1!

@ If linearly separable data, above is feasible. Else, minimize error in
separability!!

v
(Univ. of Washington, Seattle)
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Logistic Regression

Probability for a class

In LR, the score/ w'

x is converted to a probability through the sigmoid

function. So we can talk about P(y’ = +1) or P(y’ = —1)

Sigmoid Function

Sigmoid
Sigmoid Function
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.
LR represented Graphically

Activation function

Xo=1 (sigmoid in this case)

@—- y = o(s)

X1

K2

Kia
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Logistic Regression

LR Prediction
1

14 e WX

N\

Yi

LR Loss

Assume that y; = 0 or y; = 1 (i.e. the negative class has a label 0).
Then the binary cross-entropy loss applies to LR:

mMi/n yilog(yi) + (1 — y;)log(1 — i)
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e
OR and AND Functions

What can a perceptrons represent?

X1 X2 y X1 X2 y
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1
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I
Learning XOR
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XOR through Multi-layer perceptron

=4 7O
3—-‘5__; =0 <e

This is a 2-layer neural network

; Ly
y = x[1] XOR x[2] = (x[1] AND ! x[2]) OR (! x[1] AND x[Z])K'? Hi Aden

|
|

v[1] = (x[1] AND !x[2])
= g(—0.5+ x[1] —
v[2] = (!x[1] AND x[2]
=g(=0.5—x[1] +
y

v[1] OR v|2]
(

—0.5 + v[1] + v[2]) I)fu“—’y"
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ICE #1

Which methods can learn the XOR function?
© Logistics Regression X
© Naive Bayes Classifier 7
© Decision Trees "
@ Support Vector Machines % (frs |inte kewel)
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e
Multi-Layer Perceptron (MLP)
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e
Multi-Layer Perceptron (MLP)
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I
2 Layer Neural Network

Two layer neural network (alt. one hidden-layer neural network)

Inputs Outputs

Single

1-hidden layer

out(x) =g <Wo + z Wi g (W(gk) + Z Wj(k)x[j]))
K
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Deep Learning: Activations, FFN and more
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Choices for Non-Linear Activation Function

Sigmoid
-Historically popular, but (mostly) fallen out of favor
‘Neuron’s activation saturates 0 — 1.
(weights get very large -> gradients get small) sigmpid
‘Not zero-centered -> other issues in the gradient steps  _4
-When put on the output layer, called “softmax” because -1 0 1
interpreted as class probability (soft assignment) 1 Hyperbblie

tangent
*Hyperbolic tangent g(x) = tanh(x) 0
-Saturates like sigmoid unit=Bat zero-centered
*Rectified linear unit (Eﬂ_U) g(x) = x+ = max(0,x) '1,1 0 1
-Most popular choicethese days 1
-Fragile during training and neurons can “die off”...
be careful about learning rates [~
-"Noisy” or “leaky” variants 0

RelLU

Softplus g(x) = log(1+exp(x))
-Smooth approxXimation 1o rectifier activation '1_ 1 o 1
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I
Gradient of Sigmoid and RELU
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S
Sigmoid vs RELU
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S
RELU vs Leaky RELU

-

Leaky RelLU: y=0.01x /
E—
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ensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org

Computer vision before deep learning

Input Extract features Use simple classifier
e.g., logistic regression, SVMs
RRCELUEE 1 ]
sy = = il
e I
Hand-created i
features !

-

v A LeToy
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Computer vision after deep learning

Layer 1 . Layer 2 . Layer 3 . Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]
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Feed-forward Deep Learning Architecture Example

1980S-ERA NEURAL NETWORK

Hidden
layer

Links carry signals
from one node
to another, boosting
or damping them
according to each
link's 'weight'.

DEEP LEARNING NEURAL NETWORK

Multiple hidden layers
process hierarchical features

S OER Output:
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edges combinations features
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Feed-forward Deep Learning Architecture Example

Input Hidden Hidden Hidden Output
layer L, layer L, layer Ly layer L, layer L
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Feed-forward Deep Learning Architecture Example

1980S-ERA NEURAL NETWORK DEEP LEARNING NEURAL NETWORK
Hidden Multiple hidden layers
layer process hierarchical features
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Feed-forward Deep Learning Architecture Example

Input Hidden Hidden Hidden Output
layer L, layer L, layer Ly layer L, layer L
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ICE 42

Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has
1000 neurons. Let the input layer be raw pixels from a 100x100 image and

the output layer has 10 dimensions, let's say for a 10 _class image
classification example. How many total parameters exist in the DNN

’\A\ w" wn’

model?
© 10 million parameters
© 11 million parameters
© 12 million parameters

© 13 million parameters

(Univ. of Washington, Seattle)
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S
raining a DNN

SGD with mini-batch

SGD mini-batch is the staple diet. However there are some learning rate
schedulers that are known to work better for DNNs - Such as Adagrad
and more recently, ADAM. ADAM adapts the learning rate to each
individual parameter instead of having a global learning rate.
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S
raining a DNN

SGD with mini-batch

SGD mini-batch is the staple diet. However there are some learning rate
schedulers that are known to work better for DNNs - Such as Adagrad
and more recently, ADAM. ADAM adapts the learning rate to each
individual parameter instead of having a global learning rate.

How do we compute gradient in a DNN?

Back-propagation! J
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Forward Propagation vs Back-propagation

Hidden layer(s)

V....

Backprop outptlt layer
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Back Propagation explained

l. receive new observation x = [x,...x,] and target y°
2. feed forward: for each unit g; in each layer 1...L (

compute g; based on units f; from previous layer: g; =0

U + E “jk./k)

3. get prediction y and error (y-y”)
4. back-propagate error: for each unit g; in each layer L...1

(a) compute error on g; (b) for each uy, that affects g;

SE SE 1) C g " i1) upde wei
IE y N IE (1) compute error on u, 11) update the weight
= o'(h)y.. — ) ) ' )
g 2 (n)v, . oE oFE (2 )] i i oE
ol { \ ’, —_ O - _ ; —_ -
shouldg.  how h will was h, too My 98 o k, ' T ouy,
be higheJr change as high 6r :
| 5 h - do we wantg;to  how g; will change
orlowers g;changes too low: be higher/lower if u).kis higher/lower
Copyright © 2014 Victor Lavrenko
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Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules
behind deep learning and beyond (including for example ChatGPT). What
exactly is back prop? It is just a way to unravel gradient computation in
the neural network. Back prop is how we would compute the gradient in

a neural network.
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Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules
behind deep learning and beyond (including for example ChatGPT). What
exactly is back prop? It is just a way to unravel gradient computation in
the neural network. Back prop is how we would compute the gradient in
a neural network.

Back Prop as information flow

It can also be thought of as flow information from the error in the output
(the loss function) down to the weights. Update the weights so we don't
make this error next time around. Back prop is a way to do gradient
descent in neural networks!
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Good vs Bad Local minima

50

40
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20
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Hyper-parameters in Deep Learning

ICE #3: Which of the following is not a hyper-parameter in deep learning?
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer
Q All of the above
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers

© Number of neurons per hidden layer
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer

©Q Type of non-linear activation function used
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer
©Q Type of non-linear activation function used
© Anything else?
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Hyper-parameter tuning methods

Grid search:

\ Hyperparameters
/ on 2d uniform grid
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Hyper-parameter tuning methods

Grid search: O (7§ C
O O '\ Hyperparameters
o o o 07 on 2d uniform grid
o oo o
o
Random search: ® oo
*he ° ® -~ Hyperparameters
®® ¢ ¢ —  randomly chosen

..@.
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Hyper-parameter tuning methods

Grid search: O 0Q C
O O .\ Hyperparameters
o o o 0‘7 on 2d uniform grid
o o%eo o
Random search: o ,’.'
e ° ® ~~_  Hyperparameters
®©® ¢ ¢ «~ randomly chosen
o MV,
Bayesian Optimization:  © %‘gee
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.
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Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

© Weight regularization can help - 41, />
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Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

@ Weight regularization can help - 41, >

© More common over-fitting strategy for DL?
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points

or even a million data points will overfit unless we take care of
over-fitting.

© Weight regularization can help - 41, />
© More common over-fitting strategy for DL?
© Dropouts!
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - /1, {5
More common over-fitting strategy for DL?

Dropouts!

© 000

Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - /1, {5
More common over-fitting strategy for DL?

Dropouts!

© 000

Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??

o

Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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aking care of Over-fitting: Dropouts
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ensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org

More DL Architectures

Neural Networks Zoo

/00 Reference

A mostly complete chart of

Input Cell N eura l N e tWO B kS Deep Feed Forward (DFF)

O Backfed Input Cell ©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org 4
>/
/\ Noisy Input Cell "/A\\'IA
Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF) N Y ‘\,
£ XK XK
@ Hidden Cell A
AV
o WA
. Probablistic Hidden Cell
g Spiking Hidden Cell Recurrent Neural Network (RNN) Long/ Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
[ ) ) M)
@ Capsule Cell
TN TN TN
® ovicel z(aa),(aa;:( :(aa;,(aa;:( X(‘“;X(‘%Z{
QAR QAP QA
© Match input Output cell "t 'S RN
. Recurrent Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Memory Cell 9
. Gated Memory Cell
Kernel
O Convolution or Pool
Markov Chain (MC) Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)
O
Ve an W e G
NS XN XN
e 0 0y 8
S = . g

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN,

)
S a _a m/\_’ ONA ,\/\,
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https://www.asimovinstitute.org/neural-network-zoo/

e
More DL Architectures

Neural Networks Zoo

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
v _ N -
>_< o~ Ol >_< O SO
SENES® N N
>_< ~ O/ o\ >_< /O ~ o) O/o\
/N N Y i 8 B -
& ~ N ~
Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
avaAYaYaY
e
\';.\';.\';‘\';‘\"
Deep Residual Network (DRN) Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)
) C) -

NOTOC
88

7

v eseee

Capsule Network (CN)

5,

Attention Network (AN)

423 &i
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Auto Encoders

hyp()

Layer L, Layer Ly
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I
ICE 4

PCA vs Auto Encoder
Which of the following statements are true ?

© Both PCA and Auto Encoders serve the purpose of dimensionality
reduction

© They are both linear models but one uses a neural nets architecture
and the other is based on projections

© PCA is robust to outliers while Auto Encoders are not

@ Auto Encoders are as better than Glove Embeddings to find low-dim
embeddings for words

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 9, 2024 57 /83



e
PCA vs Auto-Encoders

hyp()

Layer L, Layer Ly
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AutoEncoders and Dimensionality Reduction

Visualization Performance

Auto Encoder Reference Paper
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https://www.cs.toronto.edu/~hinton/science.pdf

AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction

Fig. 3. (A) The two- A B

dimensional codes for 500 et ad. Bt ae
digits of each class produced e # aEaatt
by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen-
coder. For an alternative

visualization, see (8).
0
1
2
3
4
5
6
o 7
-
9
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https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction

Fig. 4. (A) The fraction of A

05—

retrieved documents in the 045
same class as the query when 04
a query document from the o0
test set is used to retrieve other & o3
test set documents, averaged § 026
over all 402,207 possible que- < o2

ries. (B) The codes produced
by two-dimensional LSA. (€)

The codes produced by a 2000- s

500-250-125-2 autoencoder.
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https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non-linearity
in the embeddings
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© Anything else?
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© Anything else?

@ Auto Encoders can learn convolutional layers instead of dense layers -
Better for images! More flexibility!!
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Removing obstacles in images

Input Reconstructed input

-, —_
-

Figure 12: Reconstructed image from missing image [14]

of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 9, 2024 63 /83



Removing obstacles in images

7 9 & ¢
3 3 ﬁ o
&g o ‘B O

Figure 13: Source [15]
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Coloring Images

Gray Image

Vanilla Autoencoder

Merge Model (YCbCr)

Merge Model (LAB)

Original

(Univ. of Washington, Seattle)
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De-noising Auto Encoders

Encoder Decoder

Noise

Original Noisy Code Output
Image Input
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De-noising Auto Encoders

““““““““““““““““““““““““ IdeaIIy they are identical. ------------mmmmmmmmmmmm e

An compressed low dimensional
representation of the input.

; ’ \/

. . XX
ergmal Partially | ¢ Reconstructed
input de;tro;;ed npu input

X Inpu 5'(

O Bottleneck!

Encoder Decoder p
8 9 fo X
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De-noising Auto Encoders

eyt —J Encoder »| & > Decoder
8
Output
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De-noising Auto Encoders

Detalls
@ Just like an Auto Encoder
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De-noising Auto Encoders

Detalls
@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.
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De-noising Auto Encoders

Detalls

@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!
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De-noising Auto Encoders

Detalls

@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!

o Esp. useful for a category of objects or images (e.g. digit recognition
or face recognition, etc)
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I
ICE +#5

Unsupervised Learning
Which of these is NOT an example of unsupervised learning?
© Perceptron
© Auto Encoder
© De-noising Auto Encoder
Q K-means++
© None of the above
O All of the above
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Breakouts Time 1

5 mins

Discuss in your groups what are some real-world applications of any or
many of the Auto Encoder Architectures we discussed so far you can think
of in your area of work or in a standard context e.g. images.
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
Example
| don't think its a bad car at alll — Positive Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
Example
| don't think its a bad car at alll — Positive Sentiment J

Example

Have to carry the context(state) from some-time back to fully
understand what's happening!
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e
Sequence to Sequence Model (LS

pronoun verb article

[v IU_\

(Univ. of Washington, Seattle)
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.
Sequence to Sequence Model (LSTM) Applications

one to one one to many many to one many to many many to many
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.
Sequence to Sequence Model (LSTM) Applications

3T Ha gl ? <END>
t ¢

A A A

P e -1t ehep
T |

are you ?

1
|
S

<START>
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.
Sequence to Sequence Model (LSTM) Applications

<start>  Giraffes standing <end>
Pretrained CNN Softmax Softmax Softmax Softmax

using ImageNet dataset

\\

—>
—>
—>
—>

s > > > >

CNN [=>] |=f & El=>|5l=>5]— - =25

— — - - -

e | Feature vector T T T
Input Image at fc layer

Wemb Wemb Wemb

<start> Giraffes other
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.
Breakouts Time #2

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). How would you use what we have
learned so far to model this? What architecture would you use? What

would be your data? And what are some pitfalls or painpoints your model
should address?
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Extra Slides
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Sparse Auto Encoders

Sparse AE
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Sparse Auto Encoders

Sparse AE

Reference

Original MNIST Images Autoencoder Reconstruction

Methods Best MSE Loss (MNIST or CIFAR-10)
Simple Autoencoder 0.0318 (MNIST)
Sparse Autoencoder (L1 reg) 0.0301 (MNIST)
Experiment Results
4
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https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Sparse Auto Encoders

Sparse AE
Reference

Autoencoder %parse Autoencoder with L1 Reg

100 100

200 200
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300

400 400
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https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Sparse Auto Encoders

Input Image that maximizes activations for each neuron in hidden layer!
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Sparse De-noising Auto Encoders
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