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Outline for Lecture

Training and Back-propagation

Over-fitting and Hyper-parameters

Other DL architectures

Deep Learning, Embeddings and Vector Search

Working with Embeddings
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Deep Learning References

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by
Goodfellow and Bengio et al Bengio et al
Deep Learning History Sentence Embeddings
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://www.sbert.net/


Recap from last lecture

Perceptron

OR/AND functions

XOR

Activation Functions
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Perceptron
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Perceptron
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OR and AND Functions
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LR represented Graphically
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XOR through Multi-layer perceptron
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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2 Layer Neural Network
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Deep Learning: Activations, FFN and more
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Choices for Non-Linear Activation Function
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RELU vs Leaky RELU
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Tensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org


Feed-forward Deep Learning Architecture Example
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Feed-forward Deep Learning Architecture Example
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Training a DNN

SGD with mini-batch

SGD mini-batch is the staple diet. However there are some learning rate
schedulers that are known to work better for DNNs - Such as Adagrad
and more recently, ADAM. ADAM adapts the learning rate to each
individual parameter instead of having a global learning rate.

How do we compute gradient in a DNN?

Back-propagation!
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Forward Propagation vs Back-propagation
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Back Propagation explained
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Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules
behind deep learning and beyond (including for example ChatGPT). What
exactly is back prop? It is just a way to unravel gradient computation in
the neural network. Back prop is how we would compute the gradient in
a neural network.

Back Prop as information flow

It can also be thought of as flow information from the error in the output
(the loss function) down to the weights. Update the weights so we don’t
make this error next time around. Back prop is a way to do gradient
descent in neural networks!
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Good vs Bad Local minima
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Hyper-parameters in Deep Learning

ICE #1: Which of the following is not a hyper-parameter in deep learning?

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 All of the above
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Hyper-parameters in Deep Learning

Hyper-parameters

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 Type of non-linear activation function used

5 Anything else?
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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Over-fitting in DNNs

How to handle over-fitting in DNNs

1 A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

2 Weight regularization can help - ℓ1, ℓ2
3 More common over-fitting strategy for DL?

4 Dropouts!

5 Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How’s this different from
regular validation we were doing earlier??

6 Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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Taking care of Over-fitting: Dropouts
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Tensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org


More DL Architectures

Neural Networks Zoo

Zoo Reference
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https://www.asimovinstitute.org/neural-network-zoo/


More DL Architectures

Neural Networks Zoo
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Sequence structure in NLP

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

Example

I don’t think its a bad car at all! → Positive Sentiment

Example

Have to carry the context(state) from some-time back to fully
understand what’s happening!
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Sequence to Sequence Model (LSTM) Applications
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Sequence to Sequence Model (LSTM) Applications
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Breakouts Time #1

Auto-complete — 5 mins

Let’s say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). How would you use what we have
learned so far to model this? What architecture would you use? What
would be your data? And what are some pitfalls or painpoints your model
should address?
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