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Outline for Lecture

@ Training and Back-propagation

@ Over-fitting and Hyper-parameters

@ Other DL architectures

@ Deep Learning, Embeddings and Vector Search
@ Working with Embeddings
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Deep Learning References

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by

Goodfellow and Bengio et al Bengio et al
Deep Learning History Sentence Embeddings
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://www.sbert.net/

Recap from last lecture

IEEoR
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@ Perceptron
@ OR/AND functions

o XOR

@ Activation Functions
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Perceptron

Score(x) = wo+ wy X[1] + w, x[2] + ... + wy x[d]

19 >

Score(x) >0 o[ Score(x)<0

. yec v
(TN
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Perceptron

nput Output

d
wix[j] = wo + wix[1] + ... + wax[d]
j=1

N
\

\ 4

d
g(Score(x)) _JL if jZlex[i] >0

0, otherwise
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e
OR and AND Functions

What can a perceptrons represent?

X1 X2 y X1 X2 y
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1
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I
LR represented Graphically —

Activation function

Xo=1 (sigmoid in this case)

S ey

X1

X2

Kia
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I
XOR through Multi-layer perceptron

This is a 2-layer neural network
y = x[1] XOR x[2] = (x[1] AND ! x[2]) OR (! x[1] AND x[2])

v[1] = (x[1] AND !x[2])
= g(=0.5+ x[1] — x[2])

v[2] = (1x[1] AND x[2])
= g(—0.5 - x[1] + x[2])

y

v[1] OR v[2]
(—0.5+ v[1] + v[2])
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e
Multi-Layer Perceptron (MLP)
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e
Multi-Layer Perceptron (MLP)
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I
2 Layer Neural Network

Two layer neural network (alt. one hidden-layer neural network)

Inputs Outputs

Single

out(x) =g <W0 + ijx > !
1-hidden layer /—3(_
+ Zw(k)x[] ))

out(x) = < k wkg<
Unssn = 1%’“

v
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Deep Learning: Activations, FFN and more
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Choices for Non-Linear Activation Function

s

Sigmoid
-Historically popular, but (mostly) fallen out of favor
‘Neuron’s activation saturates 0 — 1.
(weights get very large -> gradients get small) sigmpid
‘Not zero-centered -> other issues in the gradient steps  _4
-When put on the output layer, called “softmax” because -1 0 1
interpreted as class probability (soft assignment) 1 Hyperbblie
tangent
*Hyperbolic tangent g(x) = tanh(x) 0
-Saturates like sigmoid unit, but zero-centered
Rectified linear unit (ReLU) g(x) = x* = max(0,x) '1,1 0 1
-Most popular choice these days 1
-Fragile during training and neurons can “die off”...
be careful about learning rates 9 N
-"Noisy” or “leaky” variants w&&" 0 f\‘) . M‘"
RelLU

Softplus g(x) = log(1+exp(x))
-Smooth approximation to rectifier activation -
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S
RELU vs Leaky RELU

-

Leaky RelLU: y=0.01x /
-
E—
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ensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org

Feed-forward Deep Learning Architecture Example

~—

1980S-ERA NEURAL NETWORK

Hidden
layer

Input
layer,

Identify
light/dark
pixel value

Links carry signals
from one node
to another, boosting —
or damping them
according to each ‘ I1
link's 'weight'. -.--

DEEP LEARNING NEURAL NETWORK

Multiple hidden layers
? rocess hjgrarchical fegtures

Output
layer

Output:
‘George’

Identify
ombinations

& or features
entiudentifyuwenﬂfy /'

edges combinations features

3 of edges

EEF "H® mEE GEH
SLE BEd 5F BEH
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Feed-forward Deep Learning Architecture Example

Hidden
layer L,

Input
layer L,
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raining a DNN Q// _
—_ —

— .. ()
‘e c.'so"*gﬁuk meZs
Soth® Pt

PR Lol \cont)
&Dﬁwith '@(\;}mv*w" - > W m&n:-mgy

SGD mini-batchTis the staple diet. However there are some learning rate
schedulers that are known to work better for DNNs - Such as Adagrad
- ]

and more recently, ADAM. ADAM adapts the learning rate to each
individual parameter instead of having a global/learning raté

%ﬁ; A e e
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I
raining a DNN

SGD with mini-batch

SGD mini-batch is the staple diet. However there are some learning rate
schedulers that are known to work better for DNNs - Such as Adagrad
and more recently, ADAM. ADAM adapts the learning rate to each
individual parameter instead of having a global learning rate.

How do WGMM a DNN?

B’aik;propagatioQ! J
1) £ ’Jjz = 2%

gk 14@» orw  9f = [ ]_;{:’;}-w
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Forward Propagation vs Back-propagation
Cfor)

Conso™®

?

Hidden layer(s)

Output layer
i
- e"e
' °
.
.
L

V....

Backprop outpﬁt layer !5 :
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Back Propagation explained

receive new observation x = [x,...x,] and target y°
2. feed forward: for each unit g; in each layer 1...L (

[—

compute g; based on units f, from previous layer: g, =0

3. get prediction y and error (y-y*)
4. back-propagate error: for each unit g; in each layer L...1

U + 2 “jk./k)

k

(a) compute error on g; (b) for each u, that affects g;

IE E / (l/;) IE (1) compute error on uy, (11) update the weight
= >0 (h)v, — ) ) )
g : =y, oE oE | . oE
H’;’/ ! ——— It B )% (o} (gl))‘k U< U, —T =
. ou ., og . : ik

should g;  how h; will was h, too RSO 3 . J
be higher change as high or q h i1l ch

| 3 geharges fanlos owe wantg;to  how g; will change
LR ! ' be higher/lower if uy is higher/lower

— —
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Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules
behind deep learning and beyond (including for example ChatGPT). What
exactly is back prop? It is just a way to unravel gradient computation in
the neural network. Back prop is how we would compute the gradient in

a neural network.
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Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules
behind deep learning and beyond (including for example ChatGPT). What
exactly is back prop? It is just a way to unravel gradient computation in
the neural network. Back prop is how we would compute the gradient in
a neural network.

Back Prop as information flow

It can also be thought of as flow information from the error in the output
(the loss function) down to the weights. Update the weights so we don't
make this error next time around. Back prop is a way to do gradient
descent in neural networks!
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e
Good vs Bad Local minima
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Hyper-parameters in Deep Learning

ICE #1: Which of the following is &g+ a hyper-parameter in deep learning?
© Learning rate
© Number of Hidden Layers

© Number of neurons per hidden layer
Q AlIll of the above
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers

© Number of neurons per hidden layer
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer

©Q Type of non-linear activation function used
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer
©Q Type of non-linear activation function used
© Anything else?
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Hyper-parameter tuning methods

Grid search: @ o‘o &
... ¢ .\ Hyperparameters
o o o 07 on 2d uniform grid
o oo o
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Hyper-parameter tuning methods

Grid search: O (7§ C
O O '\ Hyperparameters
o o o 0/ on 2d uniform grid
o oo o

Random search: o ,,.'

*he ° ® -~ Hyperparameters
«~—  randomly chosen
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Hyper-parameter tuning methods

Grid search: O 0Q C
O O .\ Hyperparameters
o o o .‘7 on 2d uniform grid
o o%eo o
Random search: o ‘.’.'
e ° ® ~~_  Hyperparameters
®©® ¢ ¢ «~ randomly chosen
o Mo,
Bayesian Optimization: > %dgge

2 % “’o & Hyperparameter
© © @ <~ adaptively chosen
SO
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e
Over-fitting in_DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

© Weight regularization can help - 41, />

e—— ——
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

@ Weight regularization can help - 41, >

© More common over-fitting strategy for DL?
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points

or even a million data points will overfit unless we take care of
over-fitting.

© Weight regularization can help - 41, />
© More common over-fitting strategy for DL?
© Dropouts!

-
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - /1, {5
More common over-fitting strategy for DL?

Dropouts!

090@

Early stopping is also a great strategy! Stop training the DL model

when the#aldanm_e%heta&t-s-m-ereasmg How's this different from

regular validation we were doing earlier??

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 11, 2024 29 /39



S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - /1, {5
More common over-fitting strategy for DL?

Dropouts!

© 000

Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??

o

Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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aking care of Over-fitting: Dropouts
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ensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org

More DL Architectures

Neural Networks Zoo

/00 Reference

A mostly complete chart of

Neural Networks
©2019 Fjodor van \ﬁm ﬁe?mgasmovmstltute,org

Perceptron (P) Feed Forward

2o

Input Cell
O Backfed Input Cell

/\ Noisy Input Cell

@ Hidden Cel
. Probablistic Hidden Cell
g Spiking Hidden Cell Recurrent Neural Network (RNN)

Capsule Cell -
° A0 AR
Output Cell SR R R
° Kererl Koru
Match Input Output Cell S SR
— o put Outp
/ . Recurs Auto Encoder (AE) Variational AE (VAE) Denoising AE

7

% . Gated Memory Cell
v‘l Kernel
O Convolution or Pool

Markov Chain (MC)

Hopfield Network (HN)  Boltzmann Machine (BM)  Restricted BM (RBM)

Deconvolutional Network (DN)

O a a r\/\:’
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Radial Basis Network (|

Long / Short Term Memory (LSTM)
a Qo
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Deep Feed Forward (DFF)

JAN/A
TATAN
R/ v«’»’v

RBF)

Gated Recurrent Unit (GRU)
) M)

N TN
R
SEREN

SRR

(DAE) Sparse AE (SAE)

Deep Belief Network (DBN)

X

s fane e et
0 0y 8

Deep Convolutional Inverse Graphics Network (DCIGN,

)
~ a
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https://www.asimovinstitute.org/neural-network-zoo/

e
More DL Architectures

Loy O
Neural Networks Zoo Vel /

— Y
Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)
v _ N -
>_< o~ Ol >_< O SO
SENES® N N
>_< ~ O/ o\ >_< /O ~ o) O/o\
/N N Y i 8 B -
& ~ N ~
Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
avaAYaYaY
e
SN
Deep Residual Network (DRN) Differentiable Neural Computer (DNC) Neural Turing Machine (NTM)
) C) -

NOTOC
88

7

v eseee

Capsule Network (CN)

5,

Attention Network (AN)

Ny
W

| X XXX

Kohonen Network (KN)
. v'-'f{ §\4/ v(
RN
£\
X

y
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
Example
| don't think its a bad car at alll — Positive Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
Example
| don't think its a bad car at alll — Positive Sentiment J

Example

Have to carry the context(state) from some-time back to fully
understand what's happening!
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e
Sequence to Sequence Model (LS

pronoun verb article

[v IU_\
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.
Sequence to Sequence Model (LSTM) Applications

one to one one to many many to one many to many many to many
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.
Sequence to Sequence Model (LSTM) Applications

3T Ha gl ? <END>
t ¢

A A A

P e -1t ehep
T |

are you ?

1
|
S

<START>
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.
Sequence to Sequence Model (LSTM) Applications

<start>  Giraffes standing <end>
Pretrained CNN Softmax Softmax Softmax Softmax

using ImageNet dataset

\\

—>
—>
—>
—>

s > > > >

CNN [=>] |=f & El=>|5l=>5]— - =25

— — - - -

e | Feature vector T T T
Input Image at fc layer

Wemb Wemb Wemb

<start> Giraffes other
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.
Breakouts Time #1

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). How would you use what we have
learned so far to model this? What architecture would you use? What

would be your data? And what are some pitfalls or painpoints your model
should address?
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