Embeddings:
Vector & Semantic Search

Applications | Concepts | Examples

January 11 2024 | Lecture at University of Washington, Seattle by Dr. Karthik Mohan



Today’s Talk

1. Introduction and Motivation 2. Semantic Search
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Netflix Million Dollar Prize!
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Netflix Million Dollar Prize!

NETFLIX

filix

Home Rules Leaderboard Reqgister Update Submit Download

Leaderboa rd Display top 40 leaders.

Rank Team Name Best Score % Improvement Last Submit Time
- No Grand Prize candidates yet -- - -

Grand Prize - RMSE <= 0.8563

PragmaticTheon 19-06-16 01:04:47
BellKor in BigChaos
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Collaborative Filtering
Through Matrix Completion!

~

Movie Factors

Matrix with missing User
Ratings Factors

—

Machine Learning Algorithm for Matrix Completion
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Amy

Collaborative Filtering
Through Matrix Completion!

Arrival

«

Movie Factors

Arrival

Matrix with missing User
Ratings Factors

Amy N

Arrival
x = (.9
Model predicts Amy Likes
Arrival



Collaborative Filtering
Through Matrix Completion!

Linear Algebra in Action
Q: What is the closest Linear Algebra method
that looks similar to the above factorization?



Collaborative Filtering
Through Matrix Completion!

Linear Algebra in Action
Q: What is the closest Linear Algebra method
that looks similar to the above factorization?

A: SVD = Singular Value Decomposition



SVD of a matrix
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SVD of a matrix

Slgma

X=UxVv!
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SVD of a matrix

Every matrix has an SVD!

-

X=Uxv!




SVD of a matrix

Hence: Data Matrix also has an SVD!

i o

X=Uxv!




Collaborative Filtering
Through Matrix Completion!

lsigma

Collaborative Filtering: Advanced SVD method or Iterative SVD method
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Collaborative Filtering

Cold Start Problem
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Content Based Filtering

Men in Black

A i ;. &
Arrival

When Harry met

Embeddings

I/

Typically 128 or 256
latent dimensions



Content Based Filtering

Embeddings

Men in Black
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Content Based Filtering

Men in Black

y & "
Arrival

When Harry met

Embeddings

How do we
Obtain these embeddings?

4/ A: Through a DL model!

aybe last but one hidden layer activations
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Embeddings | Vector Representations

Embeddings Latent Dimensions » Interpretation
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Embeddings in Action
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Smaller Angle = Higher Cosine Similarity
Larger Angle = Lower Cosine Similarity
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Minions Men in Black

Men in Black
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Cauchy-Schwarz Inequality!
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Cauchy-Schwarz Inequality!

o X'y
—1 < CosineSimilarity(x,y) = <1
RESNRERZN

[ty <=1[lx|]lIy]l

~ Euclidean Norm of x



Embeddings in Action
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What if | like both sci-fi and romance?
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Word Embeddings

Food

Road

Embeddings

Cars

Replace movies |
with “words” and Flowers
This still works!




Word Embeddings

Food

Road

Embeddings

Cars

| love to drive cars. And paint flowers too!

. Flowers




Word and Sentence Embeddings

This embeds a word

Road /

This embeds a sentence

/

| love to drive cars. And paint flowers too!




Word and Sentence Embeddings

How do we
Obtain these embeddings?

A: Through a DL model!
Maybe last but one hidden layer activations



Word and Sentence Embeddings

\

Glove Embeddings sentence
BERT

We will cover Sentence BERT when we
Get to Transformers!




Semantic Search | Vector Search

This embeds a word

Road /

This embeds a sentence

/

| love to drive cars. And paint flowers too!

Semantic Search:
Enables us to find

the closest category for
A given sentence




Semantic Search | Vector Search

This embeds a word

Road /

This embeds a sentence

/

| love to drive cars. And paint flowers too!

Typical Search:
Based on look-up. May

Not handle semantics.
Uses Trie Datastructure




Semantic Search | Vector Search

This embeds a word

Road /

This embeds a sentence

/

| love to drive cars. And paint flowers too!

Typical Search:
Based on look-up.

Down-sides?
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Semantic Search | Vector Search

Food

Road

Embeddings

Cars

| love to drive cars. And paint flowers too!

Lower Cosine Slmllarliy ’ Equal Cosine Similarity
-

- Flowers

>

What's the closest category

for the following sentence? “l love to drive cars. And paint flowers too!"



Semantic Search | Vector Search

Food

Road

Embeddings

Cars

| love to drive cars. And paint flowers too!

Lower Cosine Slmllarliy ’ Equal Cosine Similarity
-

> Flowers

Highest cosine similarity based on

vector search: Flowers and Cars



Vector Arithmetic!

What is King - Man + Woman?



Demo on Semantic Search




