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Deep Learning References

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by
Goodfellow and Bengio et al Bengio et al
Deep Learning History

Embeddings

SBERT and its usefulness SBert Details
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://arxiv.org/pdf/1908.10084.pdf
https://www.sbert.net/


Last lecture

Training Deep Learning Model

Back-propagation as a way of computing gradients

Hyper-parameter tuning

Embeddings and Cosine Similarity

Movie Recommendations, Cold Start and Content Based
Recommendations

Search demo through web app
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Today’s Lecture

Quick Recap of Embeddings and Cosine Similarity

Glove Embeddings

Sentence Embeddings with Glove and Sentence Transformer

In-Class Coding Exercise (second half)
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Recap of Cosine Similarity in Embeddings
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In-Class Exercise 1 on Cosine Similarity - Work in groups
of 3

Let’s reference back to the last lecture. Let’s consider three dimensional
embeddings for movies. Say we have 3 movies: Avatar, Ironman and
Rainman. Given that you like Avatar, which movie would be good to
recommend between Ironman and Rainman and why? Use the concept of
embeddings and cosine similarity to derive your result.
Let’s say Avatar’s embedding is e1 = [1, 2, 2], Ironman’s embedding is
e2 = [3, 7, 8] and Rainman’s embedding is e3 = [1,−2, 6].
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Word2Vec

Skip Gram Model

Is based on the skip-gram model! How is training done? It’s
semi-supervised!!
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Word2Vec

Architecture
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Word2Vec representation
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ICE #2

What do the embedding dimensions of word2vec represent?

1 Fixed words decided by word2vec

2 Topics that are common among the words

3 Parts of speech of the words (nouns, adjectives, etc)

4 Book titles that these words came from
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Product2Vec
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Product2Vec application

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT ∥ Lecture 4January 16, 2024 12 / 23



Product2Vec application
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Product2Vec application
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Product2Vec application
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Breakout 1: Discuss your favorite X2Vec!

X2Vec

In your group - Discuss an application that requires machine learning. Be
specific about it - Example, data, features, the type of problem
(classificaiton, clustering, etc). Can you see how X2Vec would benefit your
application. What would be your X in this case? How would you learn
X2vec for your application? And how would you use it?
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Let’s list out some X’s in X2Vec!
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Generating Sentence Embeddings from Glove

Averaging embeddings of words: If we have a word embedding, how
do we generate the sentence embedding?

Simple Solution: Just average the word embeddings
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BERT - Bi-directional Encoders from Transformers
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BERT Embeddings
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BERT pre-training

Two Tasks

1 Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

2 Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?

ICE: Supervised or Un-supervised?

1 Are the above two tasks supervised or un-supervised?

Data set!

English Wikipedia and book corpus documents!
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BERT - Bi-directional Encoders from Transformers

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT ∥ Lecture 4January 16, 2024 22 / 23



Let’s work on an in-class coding exercise

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT ∥ Lecture 4January 16, 2024 23 / 23


