EEP 596: LLMs: From Transformers to GPT || Lecture 5 Dr. Karthik Mohan

Univ. of Washington, Seattle

January 18, 2024

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by Goodfellow and Bengio et al Bengio et al Deep Learning History

Embeddings SBERT and its usefulness SBert Details

- Recap of Embeddings and Cosine Similarity
- Glove Embeddings
- Sentence Embeddings with Glove and Sentence Transformer
- In-Class Coding Exercise (second half)

Today's Lecture

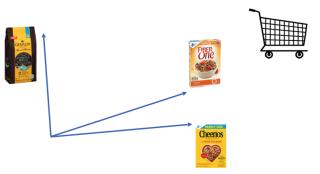
- Product2Vec and X2Vec Industry use-cases
- Embedding Theory
- Sentence Transformers
- Vector Databses

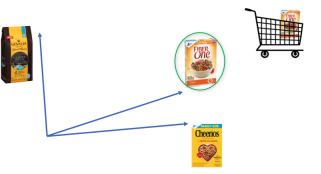
Product2Vec

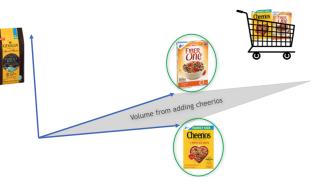
Represent products in product space with a large matrix of embedding coordinate vectors "L"

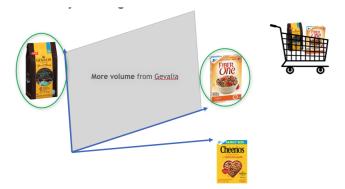
		3 11				1
L =	(1.5) 0.6 0.6 0.6 0.8	$1.9 \\ 0.1 \\ 1.6 \\ 1.0 \\ 1.4$	$1.8 \\ 1.0 \\ 1.6 \\ 0.1 \\ 1.9$	$1.4 \\ 1.6 \\ 1.6 \\ 1.6 \\ 0.8$	· · · · · · · · · · ·	$\begin{pmatrix} 0.4 \\ 1.9 \\ 1.8 \\ 0.6 \\ 0.7 \end{pmatrix}$

We obtain these embedding vectors from the <u>Product2Vec</u> service [London et al, 2017]









View Similarity or Purchase Similarity

Consider a company that sells products online. As we know, embedding representations for words or products in this case are learned from data. The question is which data to use? These are referred to as signals sometimes. So the question is, does **view similarity** of products represent a better signal for learning embeddings or **purchase similarity**? Remember: Good embeddings embed similar products close to each other dis-similar products away from each other.

ICE #1: View or Purchase Similarity?

· PREMIUM, POTENT FORMULAS: Take your pick between our High Potency Biotin 2,500 mog, Extra Strength Biotin 5,000 mog, and Max Strength Biotin 10,000 mcg-all gluten-free, soy-free, and made with cold-pressed 100% organic coconut oil.

 THE SPORTS DESEARCH DEEEDENCE: Excended in Southern California in 1980, Sports Research is a family-owned business born from a passion for fitness and wellness. Our goal is to embrace the sport of life through research-backed products created for every body-inside and out

Frequently bought together

This item: Sports Research Vegan Bigtin 5000mcg with Organic Cocorect Oil - Extra Strength \$17% (\$0.15/Court) vorime

with \$000ka of Vegan D3 & Oil Supplement w/EPA & DHA 100mcs of Vitamin K2 as MK7 L 12415 (\$0.27/Count) verime \$23*5 (\$0.40/count)

Products related to this item

...

0

Pills 25000 mr.

#1 Best Seller 1

\$27.89 (0.45/Count)

\$21.89 (\$10.95/11.00)

\$22.97 (\$2.55/Count)

Page 1 of 58

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

Breakout 1: Discuss your favorite X2Vec!

X2Vec (10 mins)

In your breakout group - Discuss an application from your company or pet project that you think would benefit from **Vector Similarity Search**. Be specific about it - What's the product? data, features, etc. What's your X here? Can you see how X2Vec representation and similarity search would benefit your application. How would you learn X2vec for your application? And how would you use it?

Let's list out some X's in X2Vec!

Generating Sentence Embeddings from Glove

Averaging embeddings of words: If we have a word embedding, how do we generate the sentence embedding?

Generating Sentence Embeddings from Glove

Averaging embeddings of words: If we have a word embedding, how do we generate the sentence embedding?

Simple Solution: Just average the word embeddings

How do we improve Sentence Embeddings?

Sentence Embeddings

As you are probably observing in your Mini-Project 1 assignment -Averaging word embeddings doesn't "perform" as well. So we need sentence embeddings that do better than just averaging word embeddings - Perhaps, capture the sequence of information flow in a sentence.

How do we improve Sentence Embeddings?

Sentence Embeddings

As you are probably observing in your Mini-Project 1 assignment -Averaging word embeddings doesn't "perform" as well. So we need sentence embeddings that do better than just averaging word embeddings - Perhaps, capture the sequence of information flow in a sentence.

Example 1

Sentence 1: "Me loves my friend" Sentence 2: "My friend loves me" Should they have the exact same sentence embeddings?

How do we improve Sentence Embeddings?

Sentence Embeddings

As you are probably observing in your Mini-Project 1 assignment -Averaging word embeddings doesn't "perform" as well. So we need sentence embeddings that do better than just averaging word embeddings - Perhaps, capture the sequence of information flow in a sentence.

Example 1

Sentence 1: "Me loves my friend" Sentence 2: "My friend loves me" Should they have the exact same sentence embeddings?

Example 2

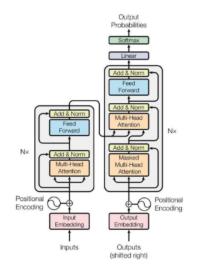
Sentence 1: "I like chocolate milk" Sentence 2: "I like milk chocolate" Should they have the same sentence embeddings?

Next Topic: Transformers, BERT and connections to Embeddings

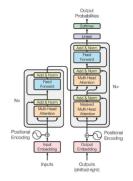
Capturing Sequence of information

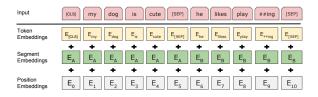
As we discussed in the history of Deep Learning - RNNs and LSTMs are DL archs that are able to capture sequence information in a sentence to some extent (the **chocolate milk** vs **milk chocolate** example). On the other hand, they weren't robust to larger context or multiple sentences and could only operate with smaller sentence lengths. This is where the advent of Transformers was a breakthrough for ML/DL and AI in general - They could do much better in capturing context, sequential information, supported multiple sentences and paragraphs, etc.

Transformers - Encoder and Decoder Architecture



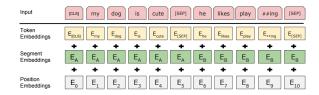
Encoder and Encoder Embeddings





(Univ. of Washington, Seattle)

Understanding Encoder/BERT at high-level



BERT - Bi-directional Encoders from Transformers

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Encoder: The architecture component of the transformer that transforms inputs through a series of Neural layers into a vector (embedding). This vector can then be useful for downstream tasks: Emotion detection, Classification, etc

- Encoder: The architecture component of the transformer that transforms inputs through a series of Neural layers into a vector (embedding). This vector can then be useful for downstream tasks: Emotion detection, Classification, etc
- Oecoder: The architecture component of the transformer that transforms inputs one at a time to generate words in sequence. Example: You ask a question of ChatGPT and it starts generating words, one at a time - Just like it were typing. That's decoder in action.

- Encoder: The architecture component of the transformer that transforms inputs through a series of Neural layers into a vector (embedding). This vector can then be useful for downstream tasks: Emotion detection, Classification, etc
- Oecoder: The architecture component of the transformer that transforms inputs one at a time to generate words in sequence. Example: You ask a question of ChatGPT and it starts generating words, one at a time - Just like it were typing. That's decoder in action.
- Input Embedding: How an input gets embedded as a vector. What would be the starting point to embed "chocolate milk" as a vector?

- Encoder: The architecture component of the transformer that transforms inputs through a series of Neural layers into a vector (embedding). This vector can then be useful for downstream tasks: Emotion detection, Classification, etc
- Oecoder: The architecture component of the transformer that transforms inputs one at a time to generate words in sequence. Example: You ask a question of ChatGPT and it starts generating words, one at a time - Just like it were typing. That's decoder in action.
- Input Embedding: How an input gets embedded as a vector. What would be the starting point to embed "chocolate milk" as a vector?
- Token Embedding: This refers to the individual token embeddings or word embedddings (or sub-word embeddings)

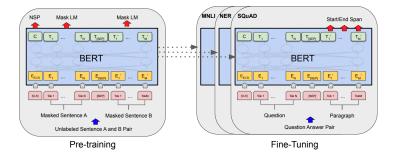
• Segment Embedding: This refers to a generic embedding that says this was segment 1 or segment 2 of the input

- Segment Embedding: This refers to a generic embedding that says this was segment 1 or segment 2 of the input
- Position Embedding: This adds in the position information into the embedding. Did "chocolate" come in at the beginning of the sentence or middle or the end?

- Segment Embedding: This refers to a generic embedding that says this was segment 1 or segment 2 of the input
- Position Embedding: This adds in the position information into the embedding. Did "chocolate" come in at the beginning of the sentence or middle or the end?
- BERT Embedding: This is the embedding or the vector used after having gone through the Encoder Architecture

- Segment Embedding: This refers to a generic embedding that says this was segment 1 or segment 2 of the input
- Position Embedding: This adds in the position information into the embedding. Did "chocolate" come in at the beginning of the sentence or middle or the end?
- BERT Embedding: This is the embedding or the vector used after having gone through the Encoder Architecture
- Sentence BERT (sBERT) Embedding: This is the embedding that you are using in Mini-Project 1, an encoding into a vector that's optimized for sentence similarity! (More on this in a bit)

BERT - Bi-directional Encoders from Transformers



BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Onext-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Onext-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

ICE: Supervised or Un-supervised?

• Are the above two tasks supervised or un-supervised?

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Onext-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

ICE: Supervised or Un-supervised?

• Are the above two tasks supervised or un-supervised?

Data set!

English Wikipedia and book corpus documents!

Loss Function for Masked Language Model (MLM)

Loss Function for MLM mimicks which type of classic ML model?

Loss Function for Masked Language Model (MLM)

Loss Function for MLM mimicks which type of classic ML model?

Cross-Entropy $L(p, \hat{p}) = -\sum_{i} \left[p_i \log(\hat{p}_i) + (1 - p_i) \log(1 - \hat{p}_i) \right]$

Loss Function for Masked Language Model (MLM)

Loss Function for MLM mimicks which type of classic ML model?

Cross-Entropy $L(p, \hat{p}) = -\sum_{i} \left[p_i \log(\hat{p}_i) + (1 - p_i) \log(1 - \hat{p}_i) \right]$

ICE: What is the loss function for Binary Classification?

BERT - Bi-directional Encoders from Transformers

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Sentence BERT a.k.a sBERT

Uses Siamese Twins architecture

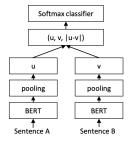
Sentence BERT a.k.a sBERT

Uses Siamese Twins architecture

Advantages of sBERT

More optimized for Sentence Similarity Search.

SBERT - Siamese BERT architecture



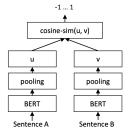


Figure 1: SBERT architecture with classification objective function, e.g., for fine-tuning on SNLI dataset. The two BERT networks have tied weights (siamese network structure).

Figure 2: SBERT architecture at inference, for example, to compute similarity scores. This architecture is also used with the regression objective function.

Loss Function for SBERT

Retrieving Tables with Chat bots — 7 mins

You are building a chat-bot product at your company where queries come in from customers that own data in your company's cloud service. Your chat-bot responds and retrieves the right table or combination of tables (through merge/filter operations) that contains this information or returns back with follow up questions to get more precise information or get back with a "Sorry, I don't have that information" response. How would you go about building a chat-bot like this? What data would you use? What data stores/data bases would be appropriate? What Deep Learning models would you use, would it be supervised or un-supervised learning? What would be your evaluation metric? How would you test if your chat bot is accurate in its responses?