EEP 596: LLMs: From Transformers to GPT || Lecture 13 Dr. Karthik Mohan

Univ. of Washington, Seattle

February 24, 2025

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by Goodfellow and Bengio et al Bengio et al Deep Learning History

Embeddings SBERT and its usefulness SBert Details Instacart Search Relevance Instacart Auto-Complete

Attention

Illustration of attention mechanism

Prompt Engineering Prompt Design and Engineering: Introduction and Advanced Methods

Retrieval Augmented Generation (RAG) Toolformer RAG Toolformer explained

Misc GenAl references Time-Aware Language Models as Temporal Knowledge Bases Stable Diffusion Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion The Illustrated Stable Diffusion

House Keeping

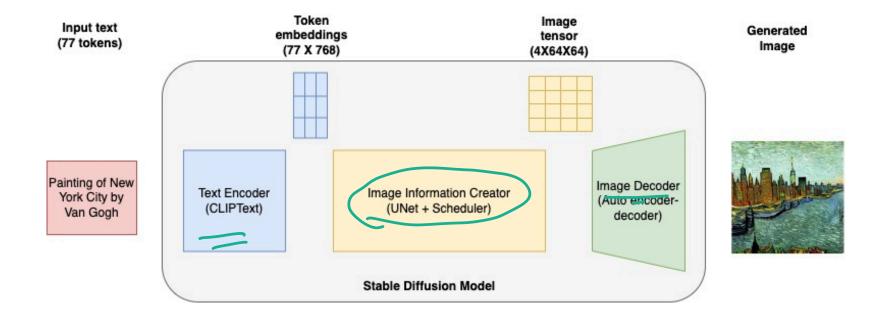
- Mini-Project 3 coming up early this week
- Combination of Stable Diffusion modeling + working with open-source Llama3 1b model (Karle Contest)
- LoRA fine-tuning is an important skill to add to your tool kit
- Any questions/concerns?

Introduction to Foundation Vision Models

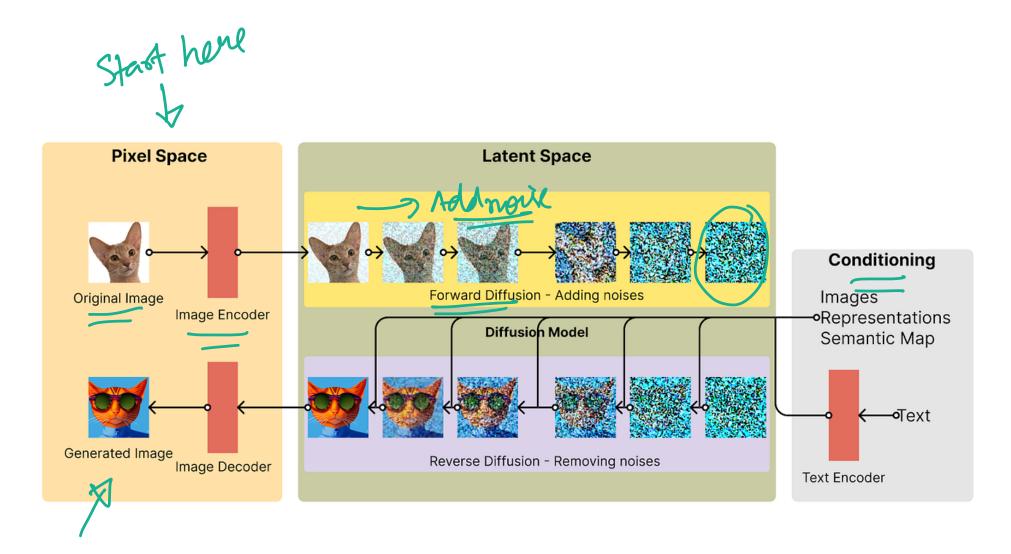
Today's lecture

- Image Foundation Models
- Notebook walk through
- Auto Encoders and Stable Diffusion

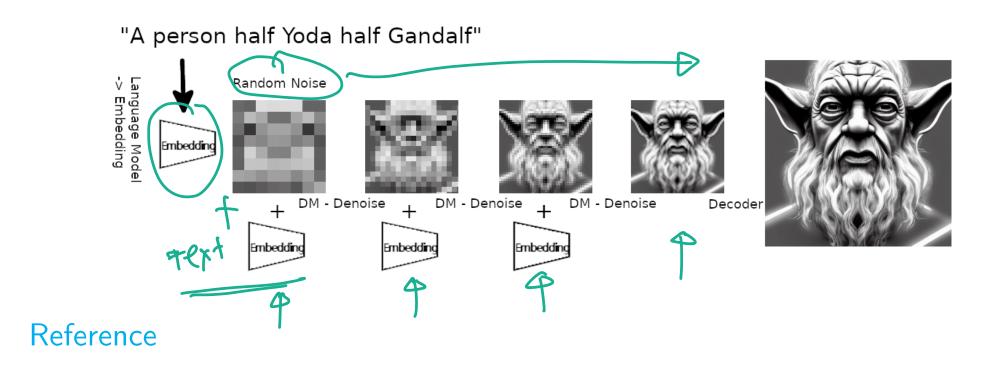
Foundation Model - Stable Diffusion (Text2Image)



Foundation Model - Stable Diffusion (Text2Image)

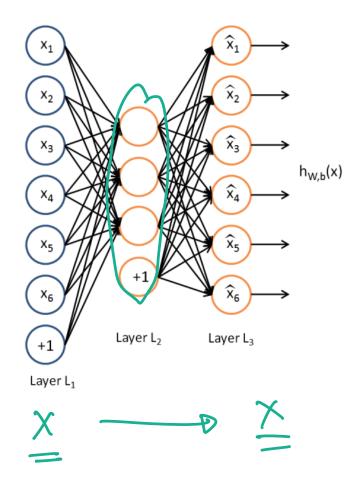


Foundation Model - Stable Diffusion (Text2Image)

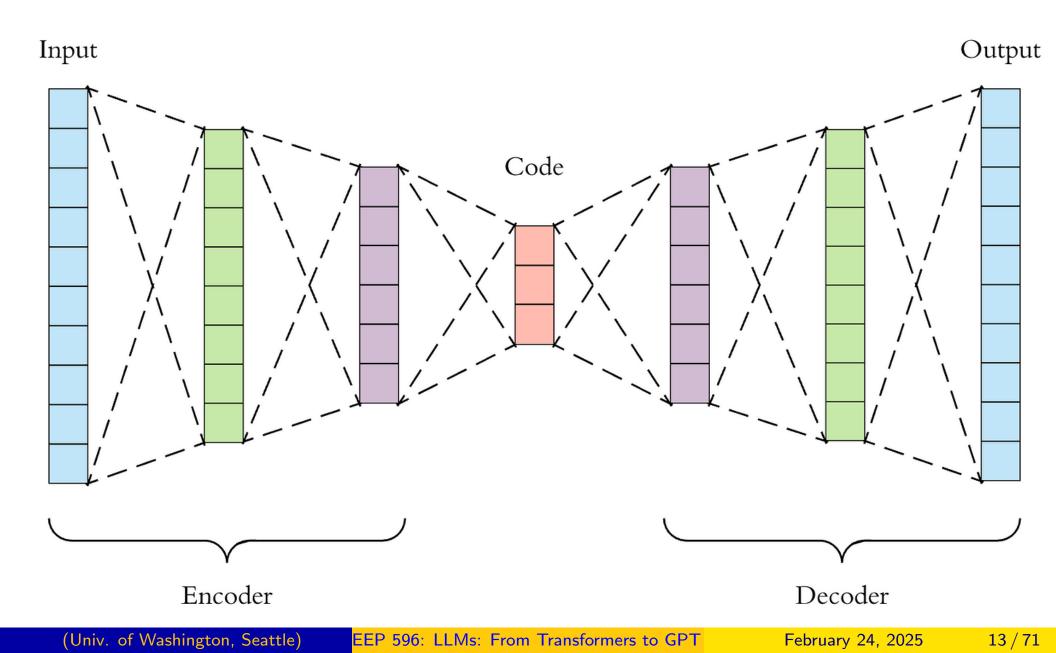


- Based on the concept of "de-noising auto encoders" and the use of text prompt to guide the de-noising
- Stable diffusion is also trained to successfully de-noise and increase the resolution of the image using text guidance

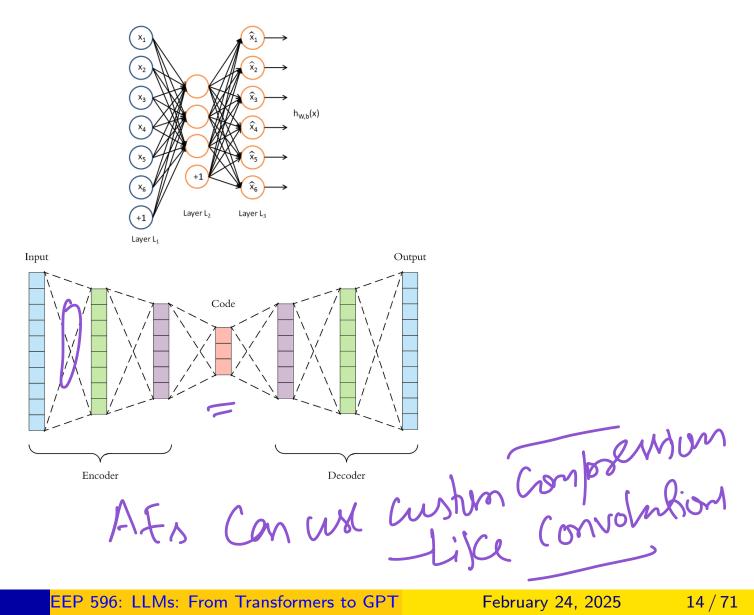
Auto Encoders



Deep Auto Encoders



PCA vs Auto-Encoders

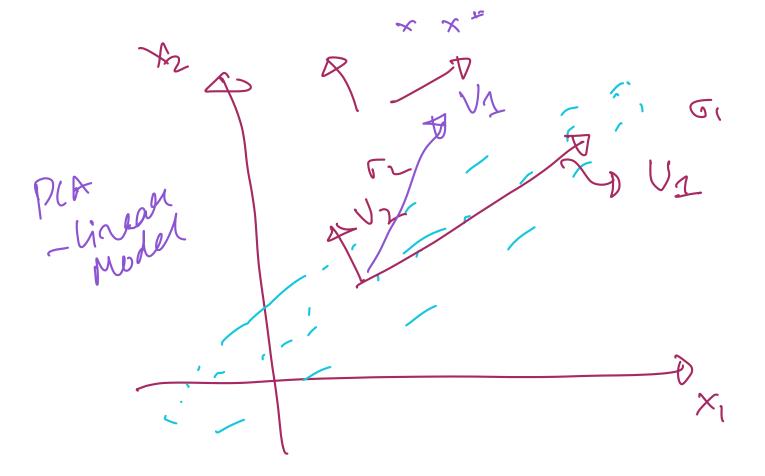


X = UZV' Dita Principal Significance of the Matrin Principal Components

PCA vs Auto Encoder

Which of the following statements are true ?

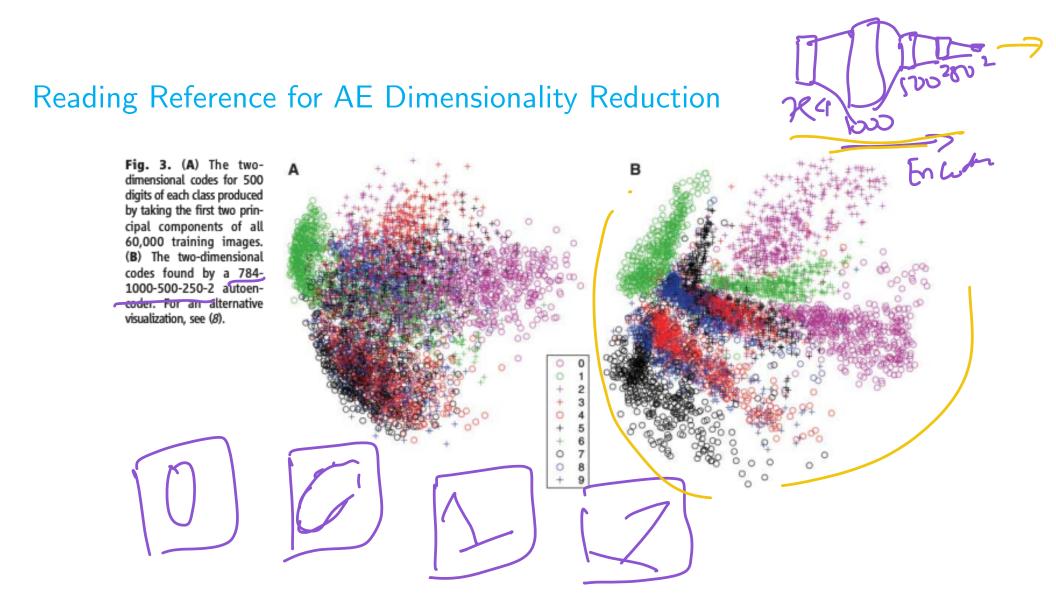
- Both PCA and Auto Encoders serve the purpose of dimensionality reduction
- They are both linear models but one uses a neural nets architecture and the other is based on projections
- Image Sector Sector
- Auto Encoders can compress images better than PCA



AutoEncoders and Dimensionality Reduction

Visualization Performance Auto Encoder Reference Paper

AutoEncoders and Dimensionality Reduction



AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction

С А Fig. 4. (A) The fraction of 0.5 retrieved documents in the 0.45 Autoencoder-10D same class as the query when European Community a query document from the 0.35 monetary/economic Interbank markets test set is used to retrieve other 0.25 test set documents, averaged over all 402,207 possible que-0.5 ries. (B) The codes produced 0.15 Energy markets by two-dimensional LSA. (C) 0,1 Disasters and The codes produced by a 2000-0.05 accidents 500-250-125-2 autoencoder. 15 31 63 127 255 511 1023 7 Number of retrieved documents в Leading econom egal/judicial indicators Government borrowings locount eaminos

Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- Anything else?

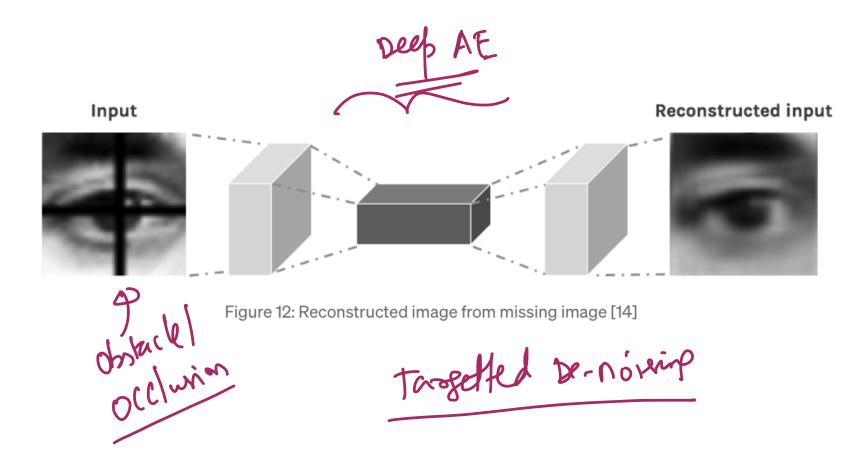
- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- Anything else?
- Auto Encoders can learn convolutional layers instead of dense layers -Better for images! More flexibility!!

ICE #2: Loss Function for Auto-Encoders

What is the loss function used to train Deep Auto-Encoders?

- Logistic Loss
- Quadratic Loss
- Triplet Loss
- Cross-Entropy Loss X

Removing obstacles in images



Removing obstacles in images

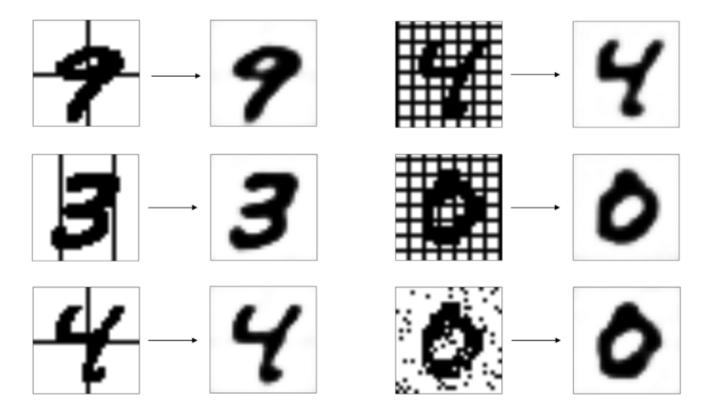
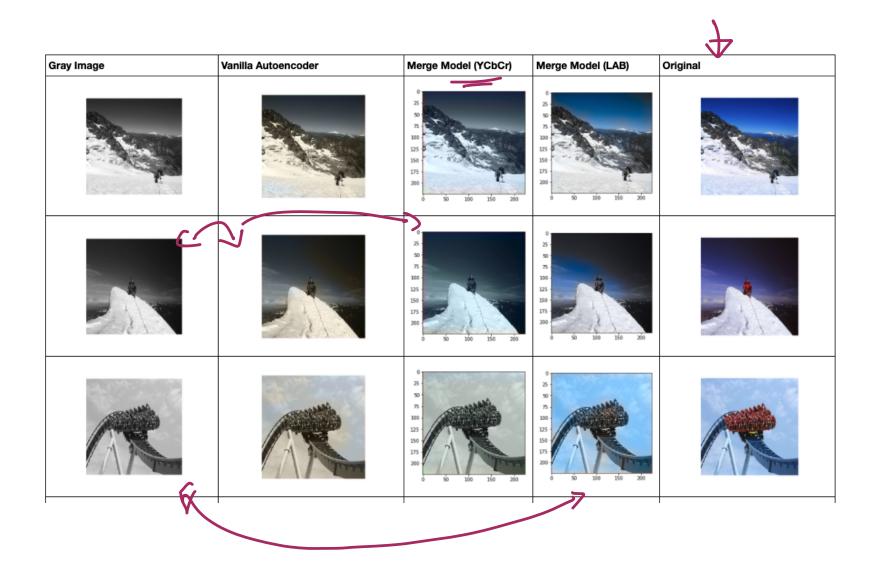
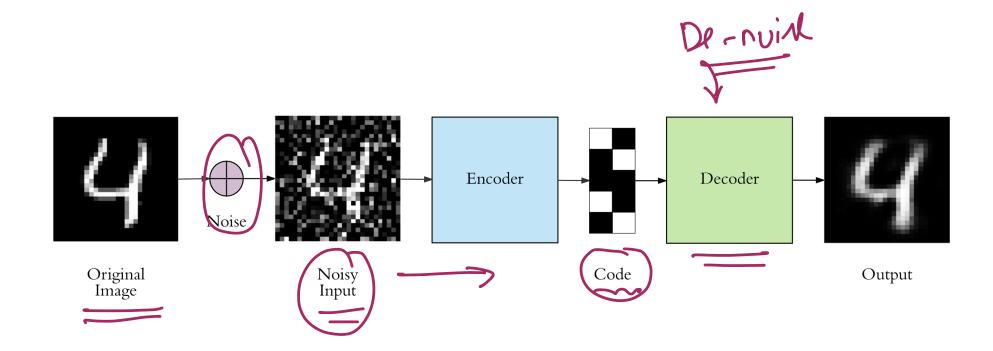


Figure 13: Source [15]

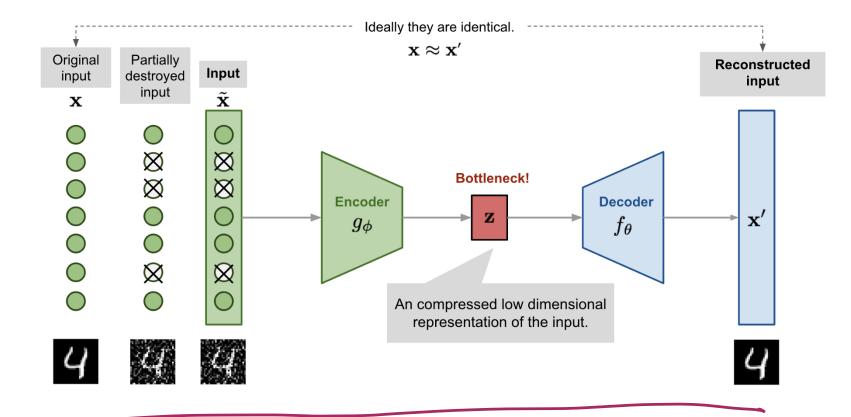
Coloring Images



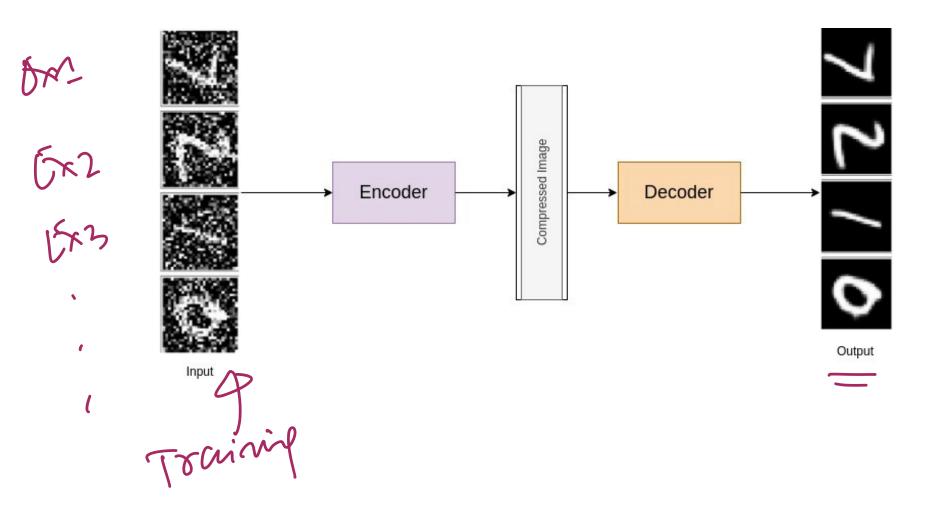
De-noising Auto Encoders



De-noising Auto Encoders



De-noising Auto Encoders



• Just like an Auto Encoder

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

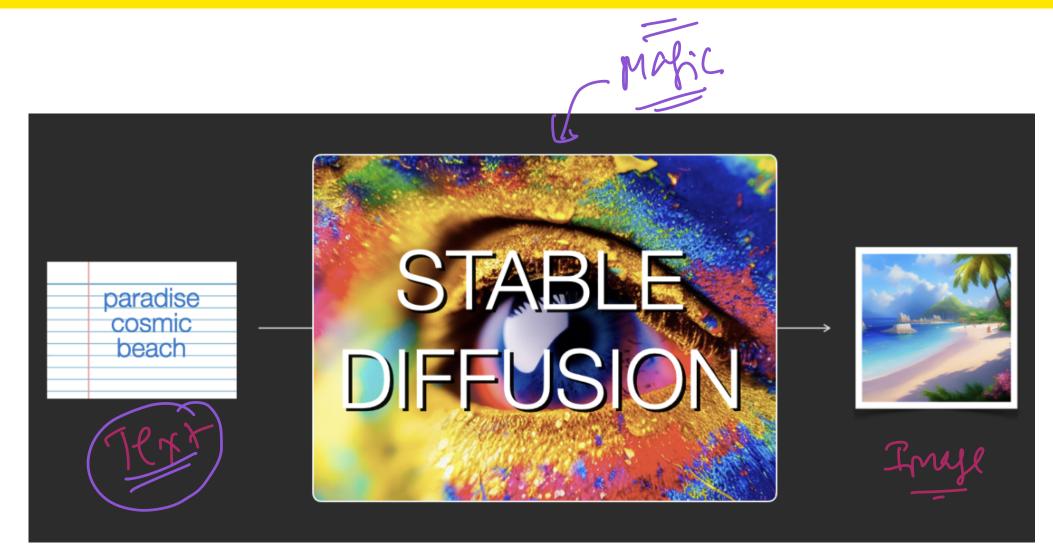
- > Superno Perceptron ~ (self-supervised),
 - Auto Encoder 2
 - De-noising Auto Encoder 3 Unsuperified
 - K-means++
 - None of the above
 - All of the above

superised

5 mins

Discuss in your groups what are some real-world applications of any or many of the Auto Encoder Architectures we discussed so far you can think of in your area of work or in a standard context e.g. images.

Stable Diffusion High-Level (only text)



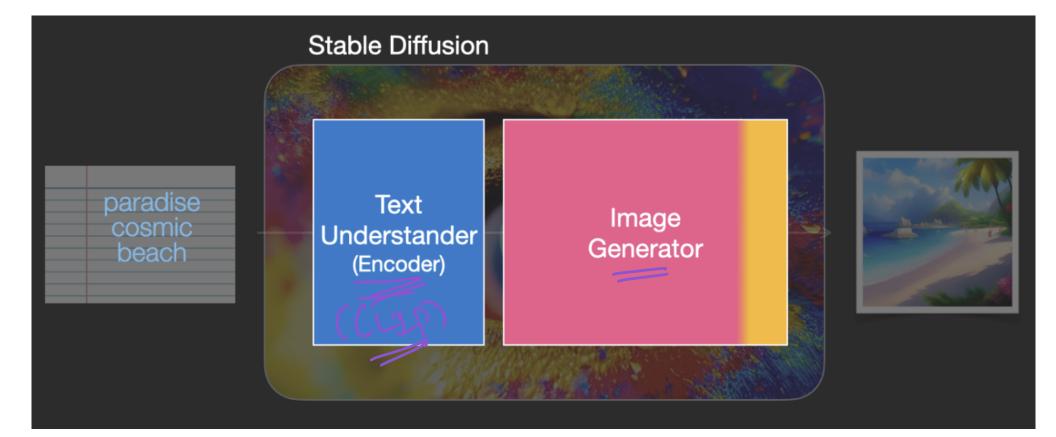
Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Stable Diffusion High-Level (text and image input) Pivete Mile Jext Pirate ship STABLE DIFFUSION Ref Inage

Reference: The Illustrated Stable Diffusion

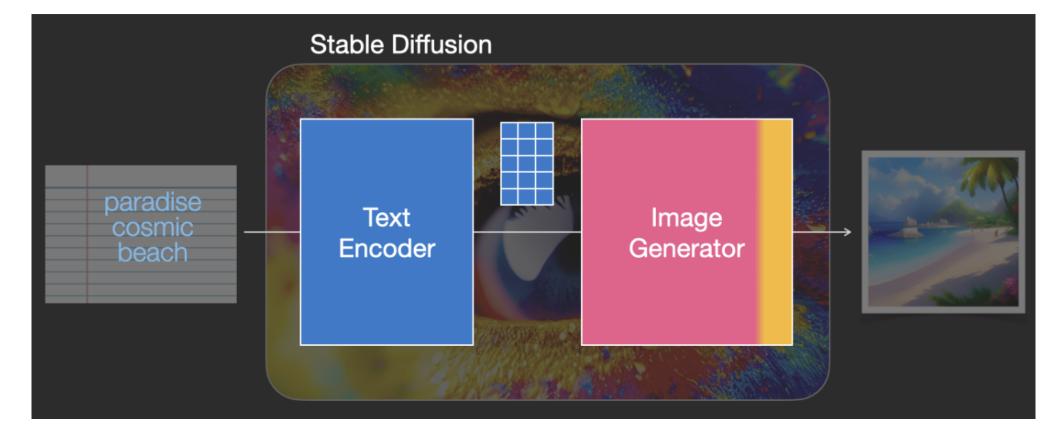
Stable Diffusion Components



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Stable Diffusion Components



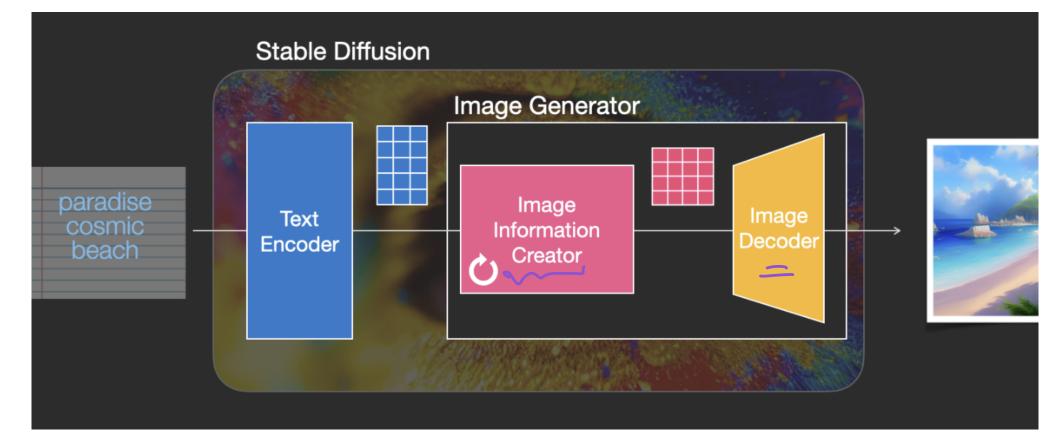
Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

February 24, 2025

33 / 71

Image Information Creator



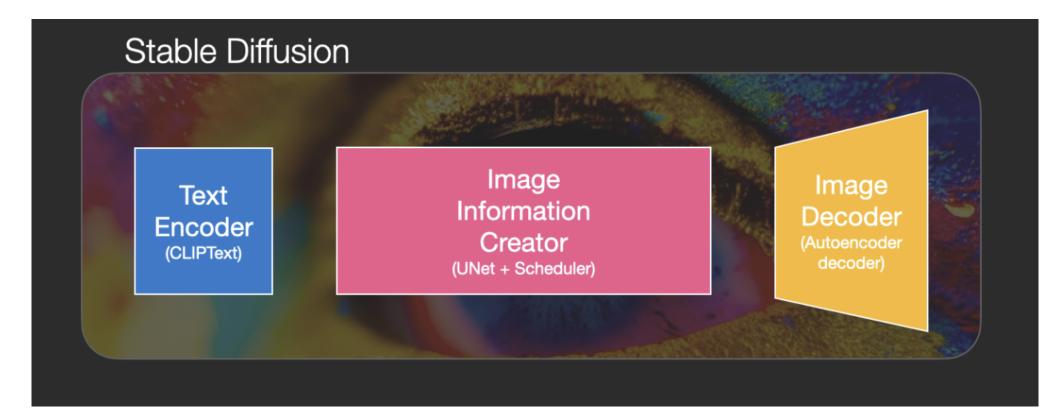
Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

February 24, 2025

34 / 71

Image Decoder



Reference: The Illustrated Stable Diffusion

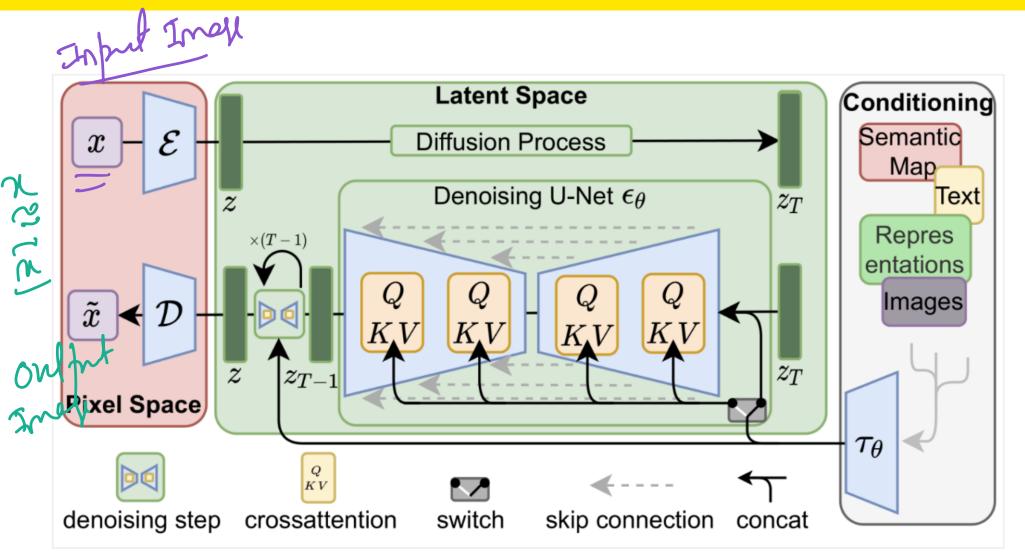
(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT Fe

Stable Diffusion - Break down of components

Text Encoding: Uses ClipText

- Image diffusion process: Take in an image and adds noise to the image.
- Severse diffusion process: Take in a text embedding and successfully generate an image embedding that can then be converted to an image. Each step here de-noises the image embedding.
- Image Decoder: This is an AutoEncoder-Decoder that takes in an Image embedding and returns an image in a pixel format (512x512x3)

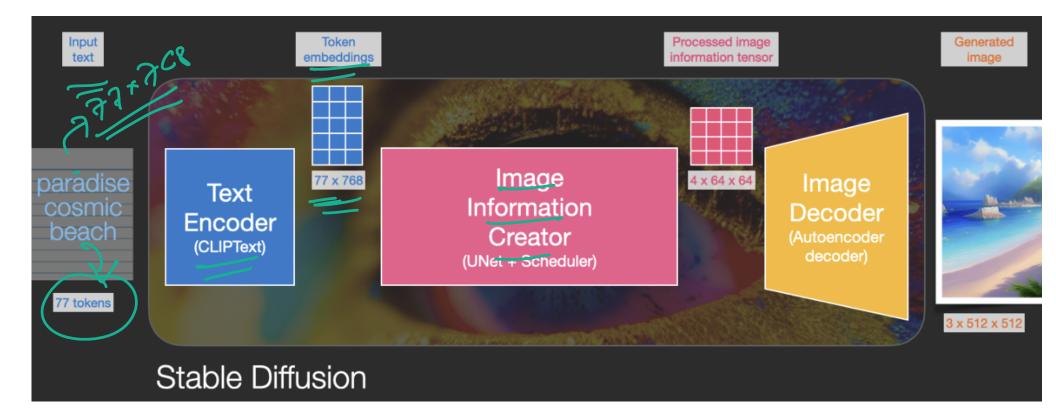
Stable Diffusion Full Architecture



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

High-level of Image Generation



Reference: The Illustrated Stable Diffusion

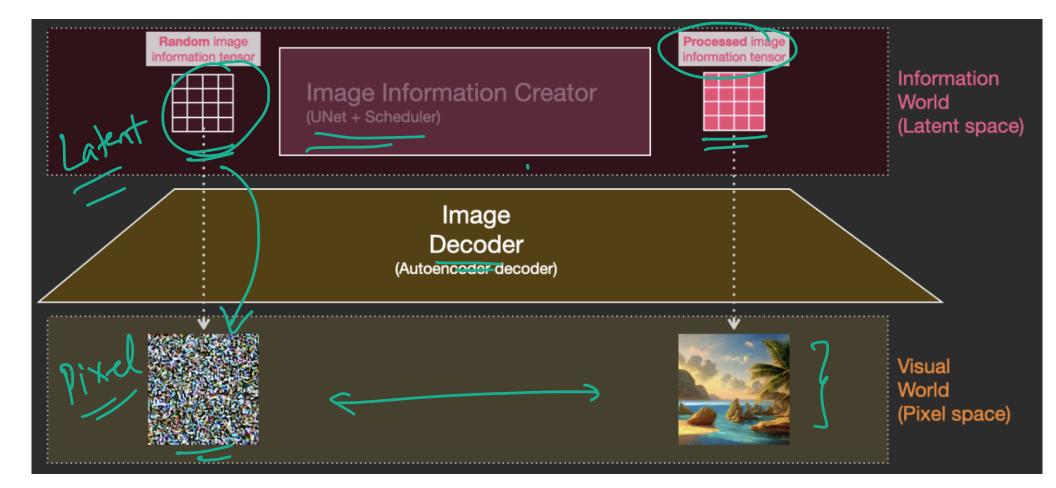
(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Stable Diffusion paradise Text Generated cosmic image Encoder beach (CLIPText) 77 tokens Image Information Creator (UNet + Scheduler) Image UNet UNet UNet . . . Decoder Step Step Step (Autoencoder 50 2 decoder) Random image Processed image information tensor information tensor Rondomnemi Diffusion

Reference: The Illustrated Stable Diffusion (Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

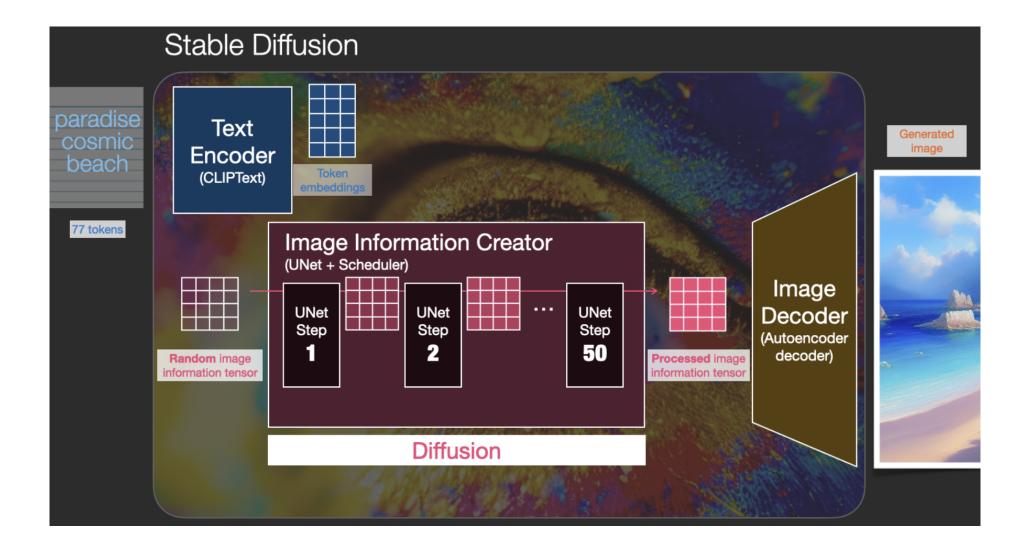
39 / 71



Reference: The Illustrated Stable Diffusion

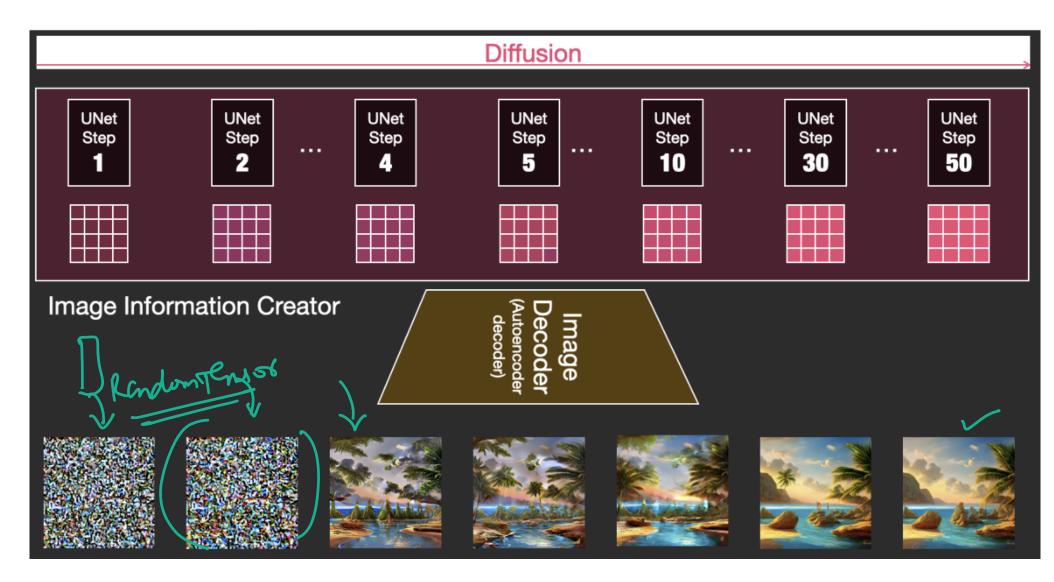
(Univ. of Washington, Seattle) EEP 596: LLN

EEP 596: LLMs: From Transformers to GPT



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT



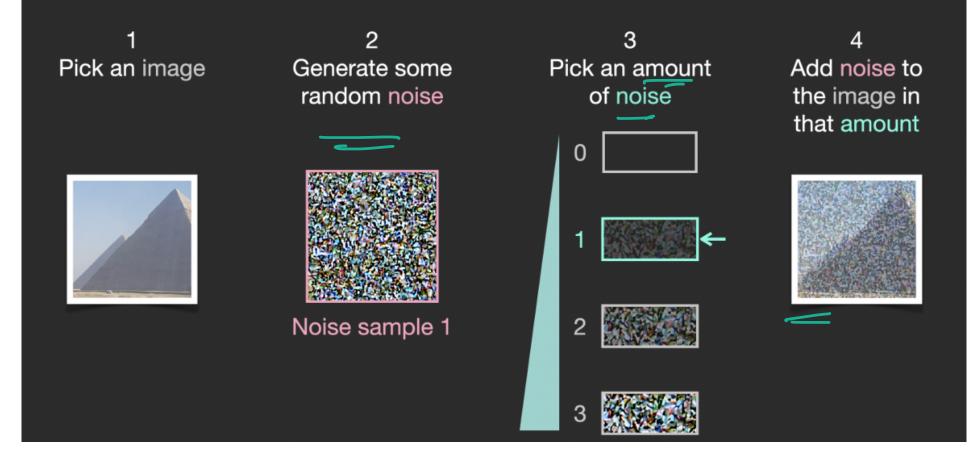
Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

Generating Training Examples with Noise Addition

Training examples are created by generating noise and adding an amount of it to the images in the training dataset (forward diffusion)

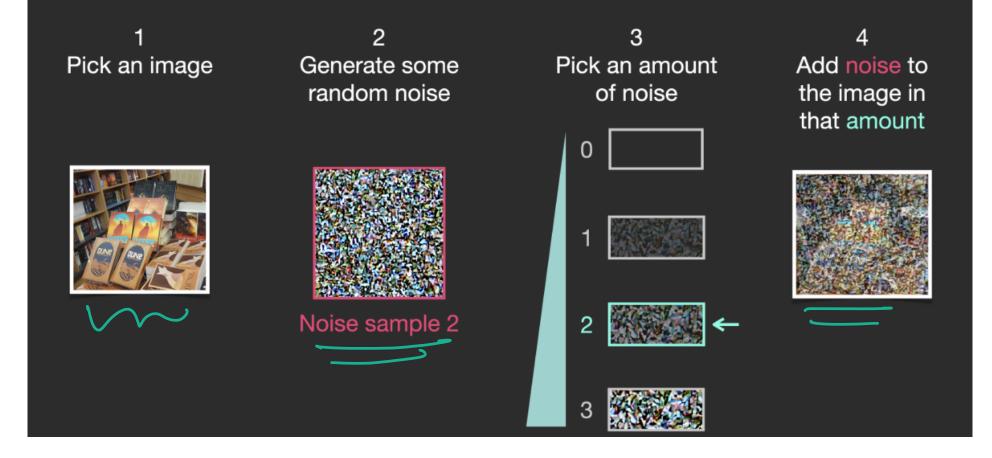


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Generating Training Examples with Noise Addition

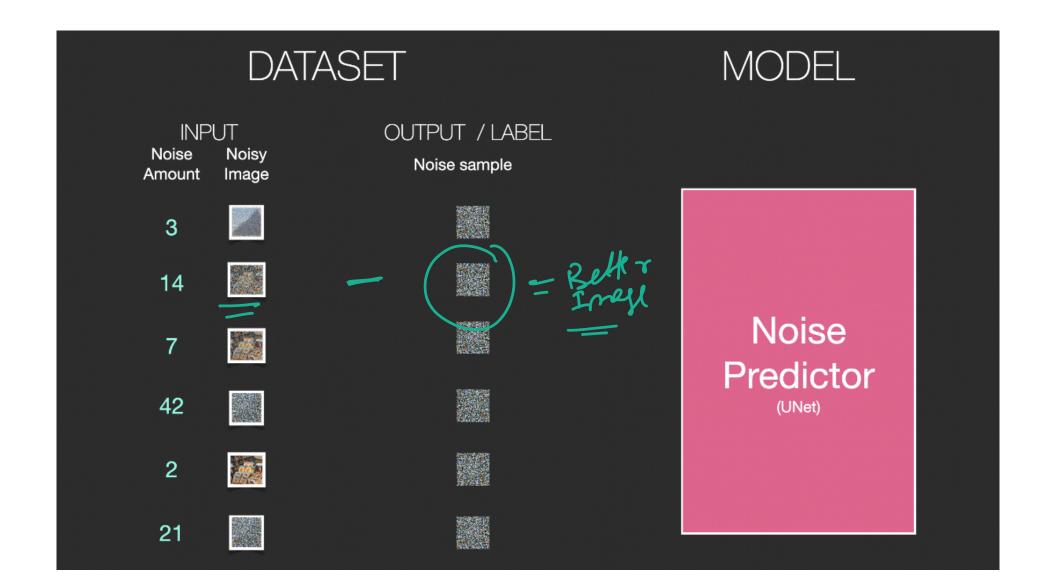
Generating a 2nd training example with a different image, noise sample and noise amount (forward diffusion)



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Generating Training Examples with Noise Addition

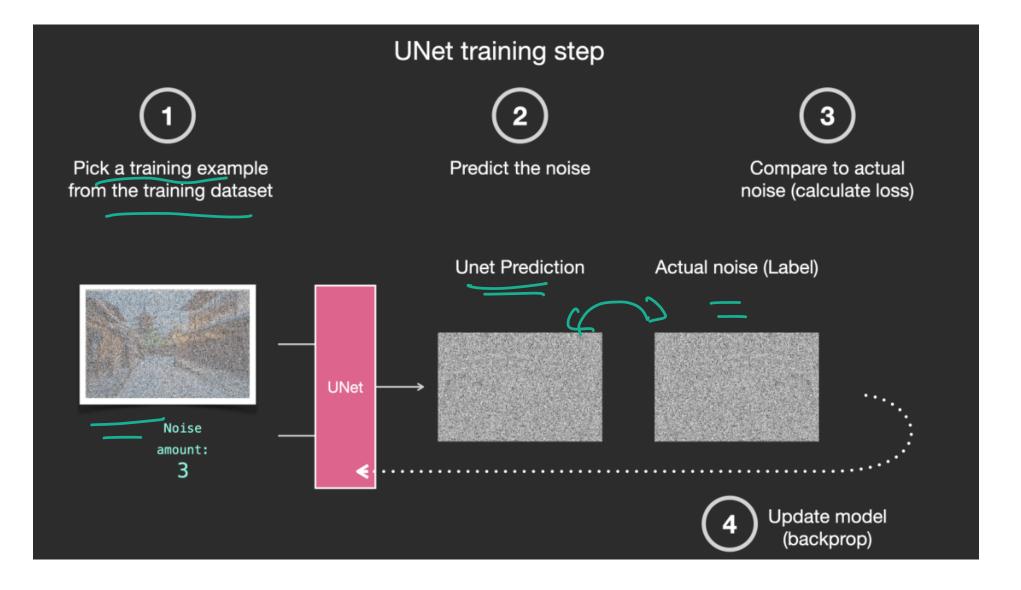


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

Training Process

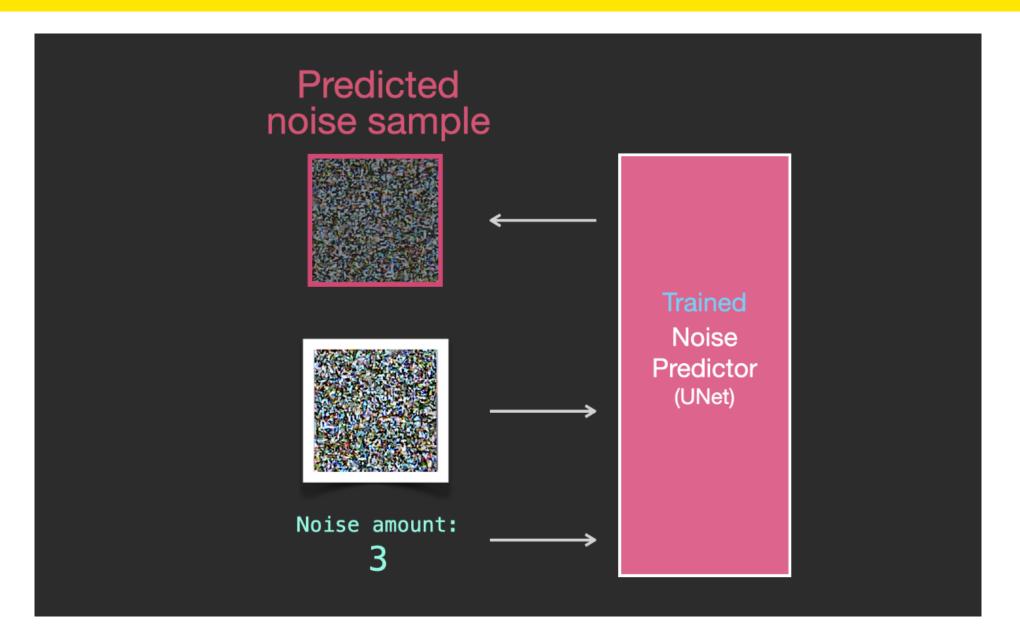


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

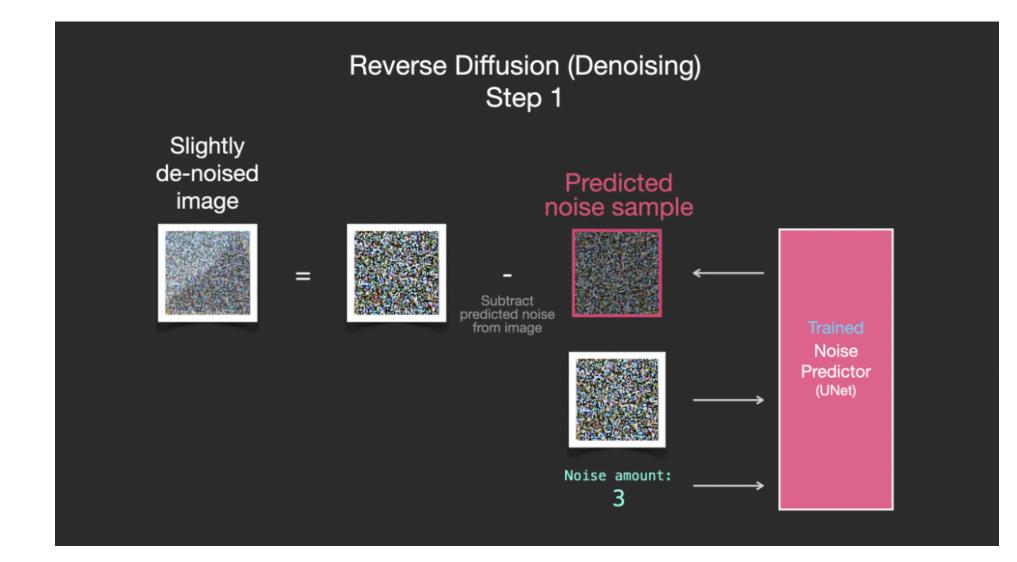
Predicting noise and Noise Removal



Reference: The Illustrated Stable Diffusion (Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

47 / 71

Predicting noise and Noise Removal

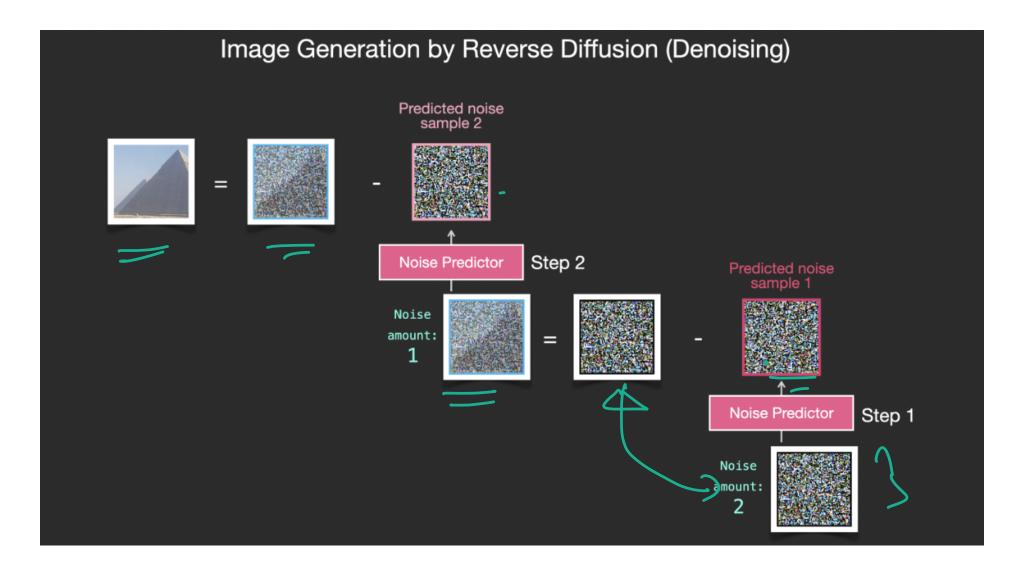


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

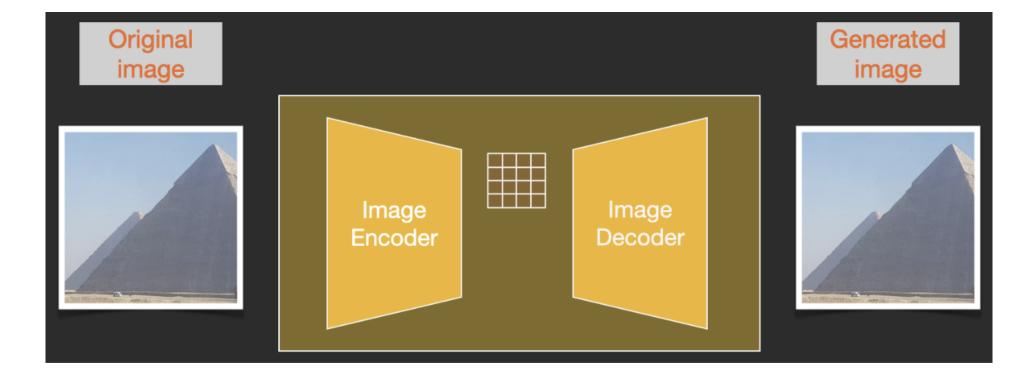
Predicting noise and Noise Removal



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

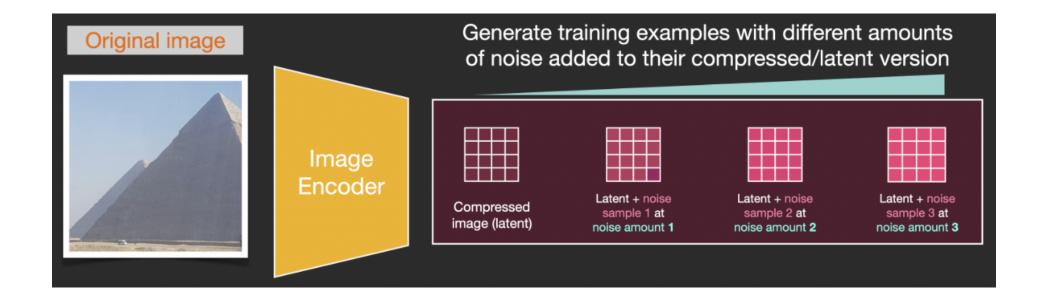
Speeding up Stable Diffusion



Reference: The Illustrated Stable Diffusion

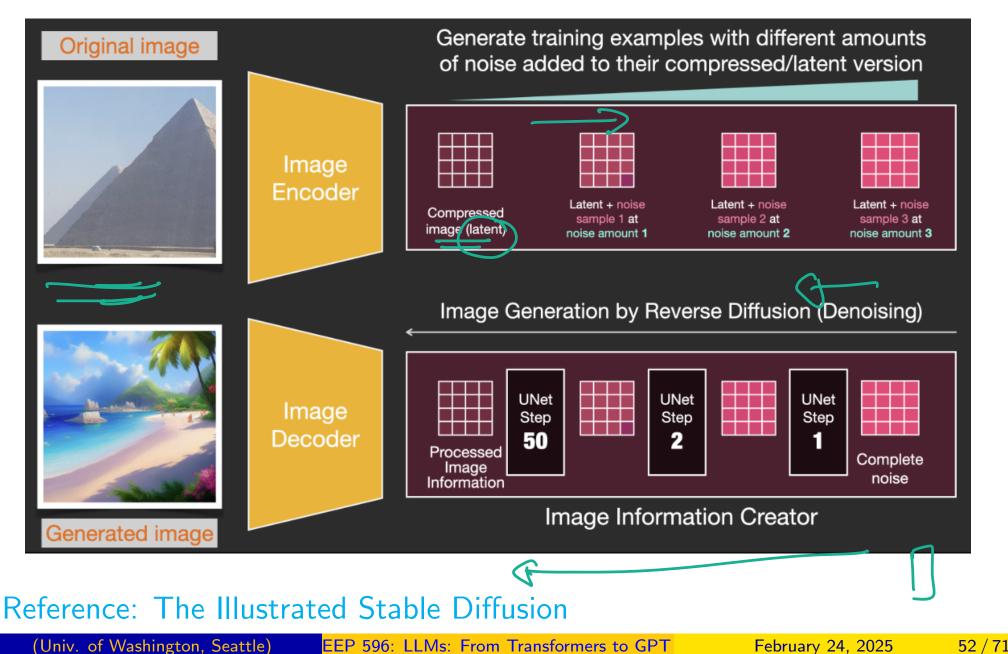
(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT Febru

Speeding up Stable Diffusion



Reference: The Illustrated Stable Diffusion

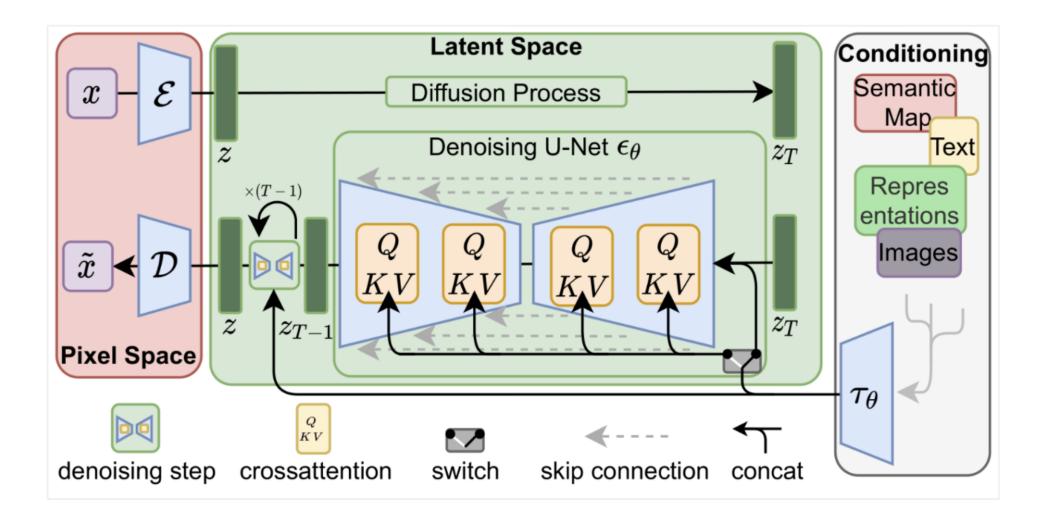
Speeding up Stable Diffusion



(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

Stable Diffusion Full Architecture

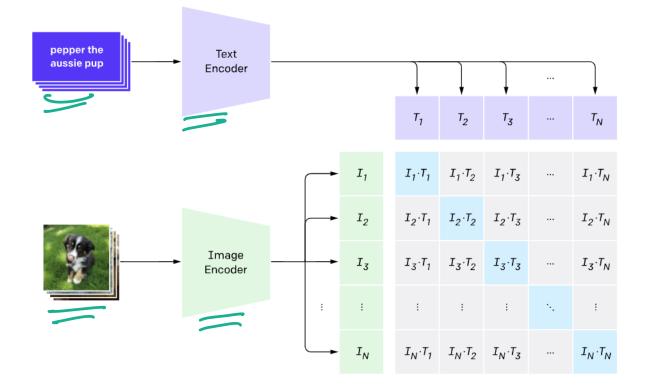


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

Clip Pre-Training Architecture

1. Contrastive pre-training



CLIP pre-trains an image encoder and a text encoder to predict which images were paired with which texts in our dataset. We then use this behavior to turn CLIP into a zero-shot classifier. We convert all of a dataset's classes into captions such as "a photo of a dog" and predict the class of the caption CLIP estimates best pairs with a given image.

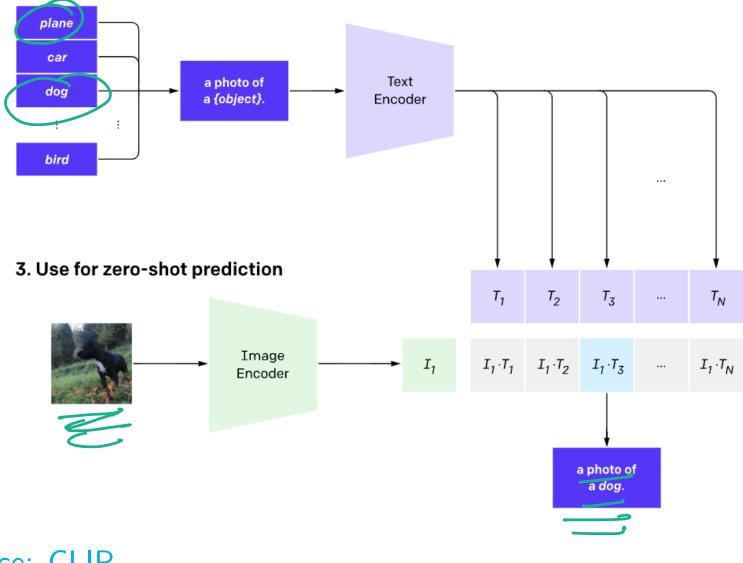
Reference: CLIP

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

Clip Zero-Shot Prediction Process

2. Create dataset classifier from label text



Reference: CLIP

(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

What pre-trained encoders would CLIP probably have used for text and image encodings?

- CNN for both
- Word2Vec and CNN
- Transformer and Vi Transformer
- Glove and CNN

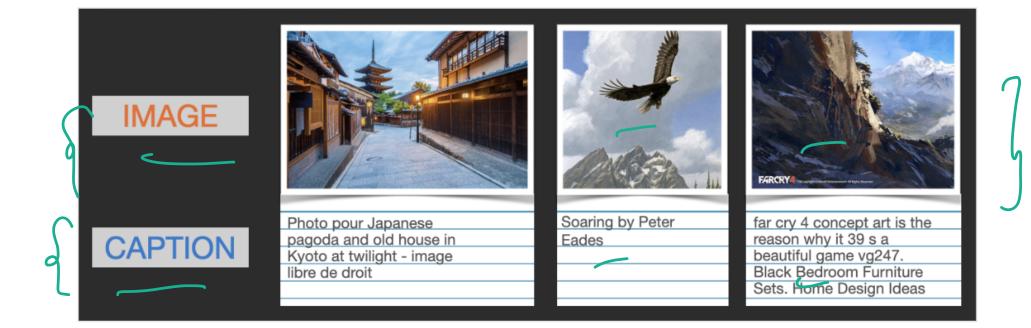
56 / 71

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
                - learned temperature parameter
# t
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
```

Figure 3. Numpy-like pseudocode for the core of an implementation of CLIP.

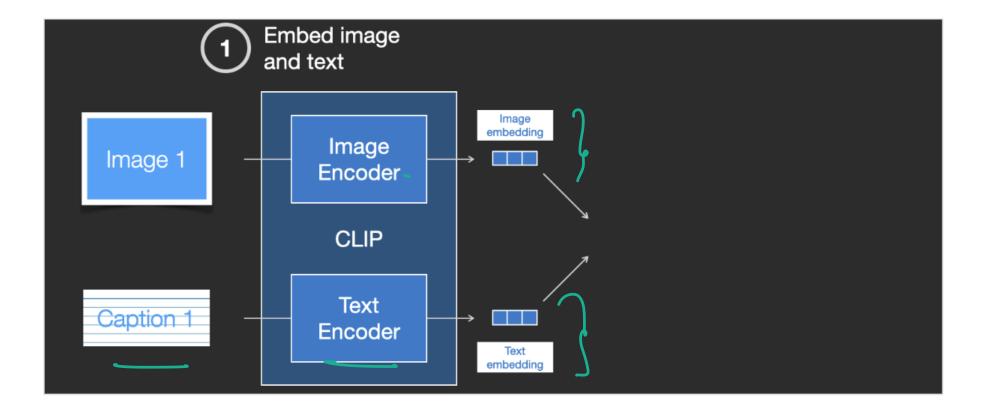
Reference: CLIP

Clip Training Examples



Question: How many examples used for Training? Reference: The Illustrated Stable Diffusion

Clip Training Process

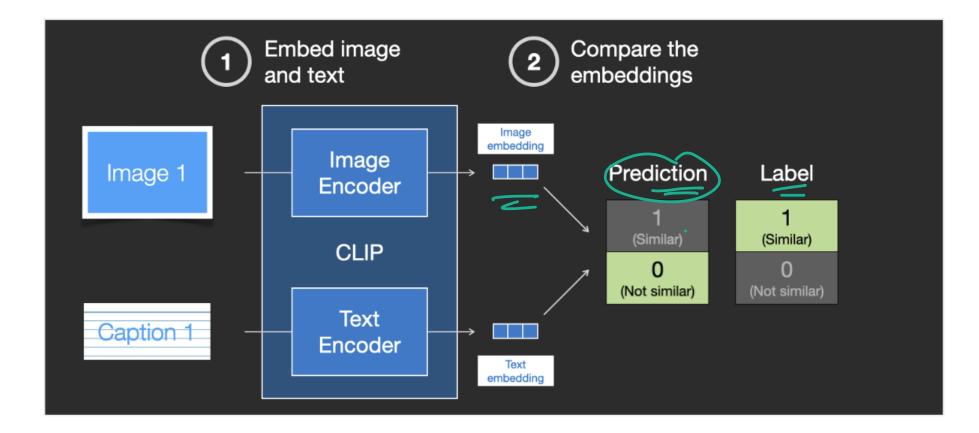


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT February 24, 2025

59 / 71

Clip Training Process

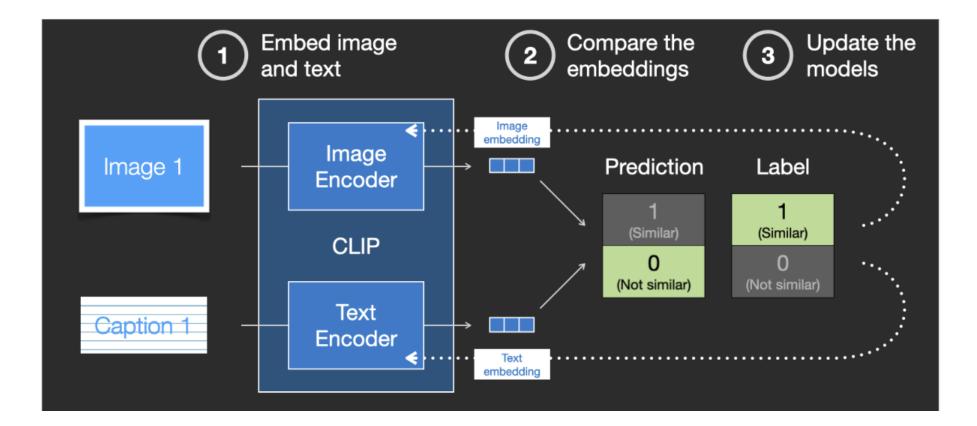


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT February 24, 2025

60 / 71

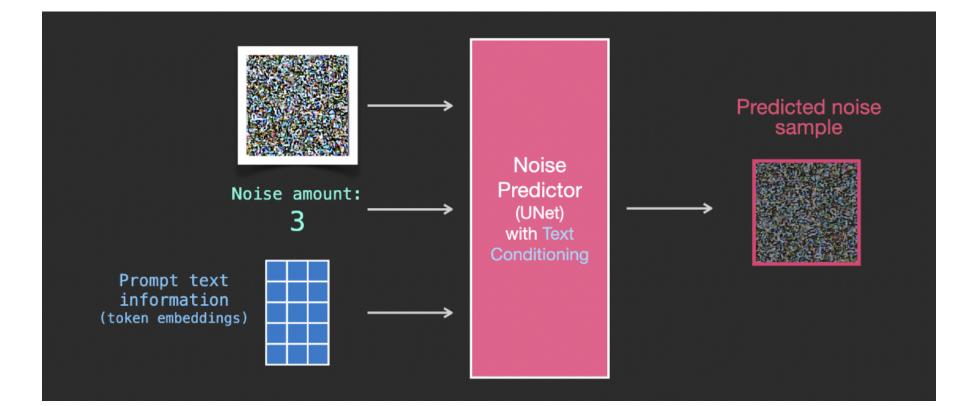
Clip Training Process



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT February 24, 2025 61 / 71

Image Generation Process



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT February 24, 2025

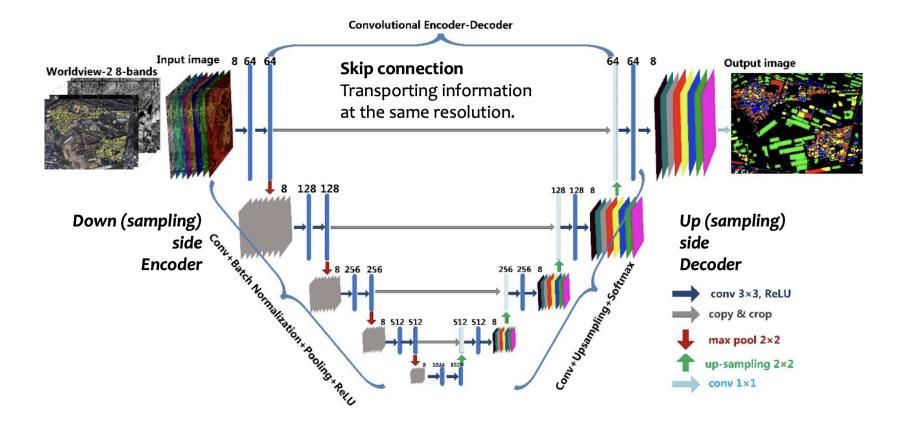
Image Generation: Training Data

Reference: The Illustrated Stable Diffusion

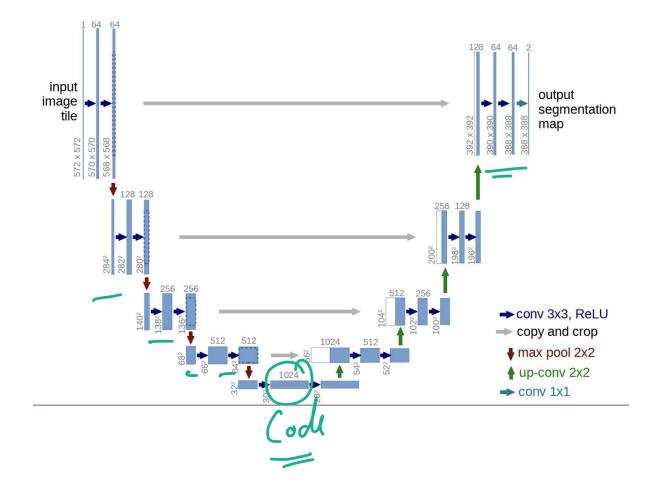
(Univ. of Washington, Seattle)

EEP 596: LLMs: From Transformers to GPT

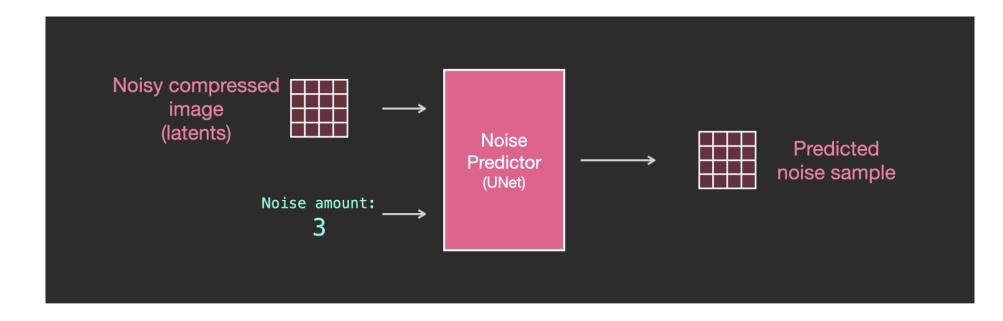
Unet Architecture



Unet Architecture



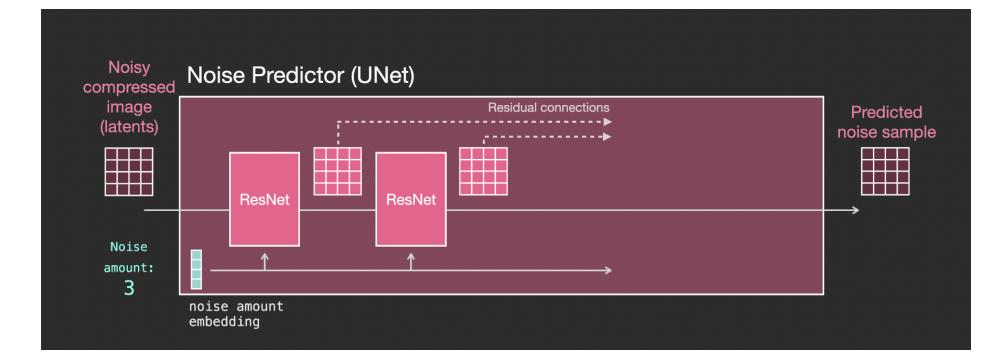
Unet Predictor (Without Text)



Reference: The Illustrated Stable Diffusion

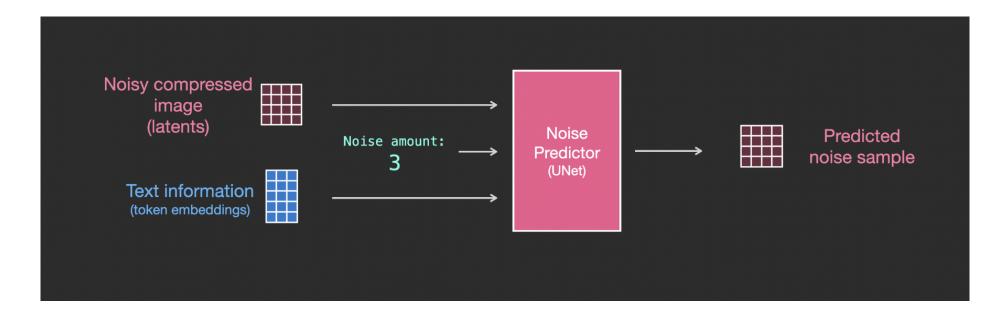
66 / 71

Unet Predictor (Without Text)



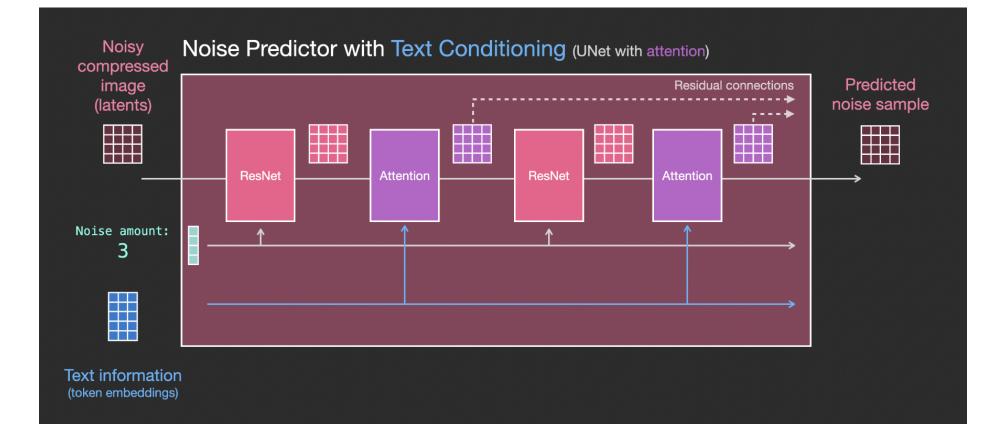
Reference: The Illustrated Stable Diffusion

Unet Predictor (With Text)



Reference: The Illustrated Stable Diffusion

Unet Predictor (With Text)

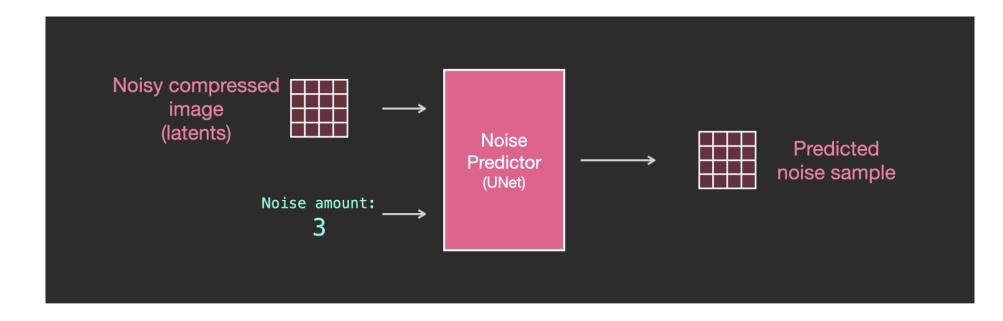


Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT February 24, 2025

2025 69 / 71

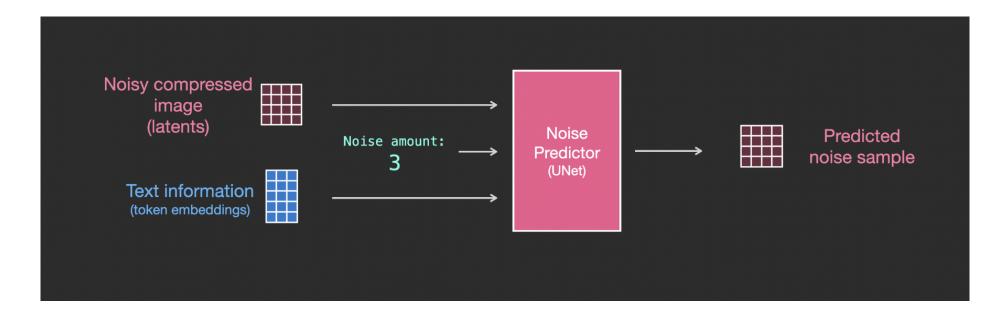
Unet Predictor (Without Text)



Reference: The Illustrated Stable Diffusion

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT Fe

Unet Predictor (With Text)



Reference: The Illustrated Stable Diffusion