Llama3 & DeepSeek v3

Architecture | Fine-tuning | Inference

Dr. Karthik Mohan, Feb 26 2025

1. Types of Training

3. DeepSeekV3

4. Notebook Walkthrough

Types of LLM training

Foundation Model/Pre-Trained Models

Post-Training

Reinforcement Learning with Human Feedback (RLHF)/Direct Preference **Optimization (DPO)**

Types of LLM training

Foundation Model/Pre-Trained Models

Supervised Fine-tuning

Instruction Fine-tuning

Foundation Model/Pre-Trained Models

Instruction Fine-tuning

Reinforcement Learning with Human Feedback (RLHF)/Direct Preference **Optimization (DPO)**

Types of LLM training

Supervised Fine-tuning

Why not just do a single training instead of multiple trainings for LLMs?

1.

2. 3. 4.

Single training won't work Multiple trainings also different sources of high quality vs medium quality data Single Training has no foundation to build on **Multiple Training is faster**

Pre-Trained vs Instruct Mode

Pre-Trained Models are trained as a Masked Language Model and for Next Token Prediction or Multiple Token Prediction

Instruct Fine-tuning is fine-tuning a pretrained model to follow instructions

Pre-Trained vs Instruct Mode

Pre-Trained Models are trained as a Masked Language Model and for Next Token Prediction or Multiple Token Prediction

Instruct Fine-tuning is fine-tuning a pretrained model to follow instructions on a wide variety of tasks

Pre-Trained vs Instruct Fine-tuned Model

Pre-Trained Input: "The red fox ____" Output: "chased" Input: "The red fox chased the _____" Output: "blue" Input: "The red fox chased the blue ____" Output: "bird"

Instruct Fine-tuned

Input: "You are to complete the following sentence. Sentence: 'The red fox ' " Output: "The red fox chased the blue bird. And the bird flew away in the nick of time!"

Instruct Fine-tuning vs Supervised Fine-Tuning

Instruct Fine-tuning is fine-tuning a pre-trained model to follow instructions on a wide variety of tasks

Supervised Fine-tuning is fine-tuning the pretrained LLM on specific tasks: Sentiment analysis, text summarization, question answering, intent detection, etc

Instruct Fine-tuning vs Supervised Fine-Tuning

Instruct Fine-tuning is fine-tuning a pre-trained model to follow instructions on a wide variety of tasks

Supervised Fine-tuning is fine-tuning the pretrained LLM on specific tasks: Sentiment analysis, text summarization, question answering, intent detection, etc

SFT vs Instruct Fine-tuned Model

Supervised Fine-tuning

Input: "I am not feeling good today" Output: "Unhappy" Input: "I would love to go to New York and spend time on Times Square" Output: "New York, Times Square" Input: "What is the tallest mountain in the world?" Output: "Mount Everest"

Instruct Fine-tuning

Input: "You are to complete the following sentence. Sentence: 'The red fox ' " Output: "The red fox chased the blue bird. And the bird flew away in the nick of time!"

Instruct Fine-tuning vs Supervised Fine-Tuning

SFT trains a pre-trained LLM to do well on specific NLP tasks.

Instruction Fine-tuning looks at the ability of an LLM to follow instructions on variety of tasks. There is no clear indication of task + makes the LLM behave more like an AI agent

What is the loss function for SFT?

What is the loss function for Instruct models?

1. 2.

1. 2.

Cross-entropy Quadratic loss

Cross-entropy Quadratic loss

Lama 3 Instruct Performance

Meta Llama 3 Instruct model performance

	Meta Llama 3 8B	Gemma 7B - It Measured	Mistral 7B Instruct Measured
MMLU 5-shot	68.4	53.3	58.4
GPQA 0-shot	34.2	21.4	26.3
HumanEval 0-shot	62.2	30.5	36.6
GSM-8K 8-shot, CoT	79.6	30.6	39.9
MATH 4-shot, CoT	30.0	12.2	11.0

Reference: <u>https://ai.meta.com/blog/meta-llama-3/</u>

	Meta	Gemini	Claude 3
	Llama 3	Pro 1.5	Sonnet
	70B	Published	Published
MMLU 5-shot	82.0	81.9	79.0
GPQA	39.5	41.5	38.5
0-shot		сот	Сот
HumanEval 0-shot	81.7	71.9	73.0
GSM-8K	93.0	91.7	92.3
8-shot, CoT		11-shot	0-shot
MATH 4-shot, CoT	50.4	58.5 Minerva prompt	40.5

Lama 3 Instruct Performance

Reference: <u>https://ai.meta.com/blog/meta-llama-3/</u>

If you had to fine-tune a LLM model that can detect an emotion from a review - which would you pick?

Fine-tune an instruct model Fine-tune the pre-trained model Fine-tune the SFT model

1.

2. 3.

Lama2vs Lama3

7 times larger pre-train data set. 15 Trillion **Tokens** of data ~ 150 million books High-quality filters to filter out bad data in training - Use Llama2 Better "data mix" - Trivia, STEM, coding, historical knowledge

Larger model means better performance (8B vs **70B**) But more data = better performance (also avoids over-fitting). Log-linear improvement from 200B to 15T tokens

Data Parallelization

Model Parallelization

Latent Attention

Data Parallelization

Model Parallelization

Latent Attention

Data Parallelization

Model Parallelization

Latent Attention

Data Parallelization

Model Parallelization

Latent Attention

In the model parallelism regime - Assume a new **DeepFetch** model got released on the market with 1 trillion parameters. Assume that for pretraining, you are using H100 GPUs with 80 GB ram. How many GPUs would you need to have to hold the model in memory?

1. 2. 3. 4.

CE #3

25 50 75

100