Llama3 & DeepSeek v3

Architecture | Fine-tuning | Inference

Today's Talk

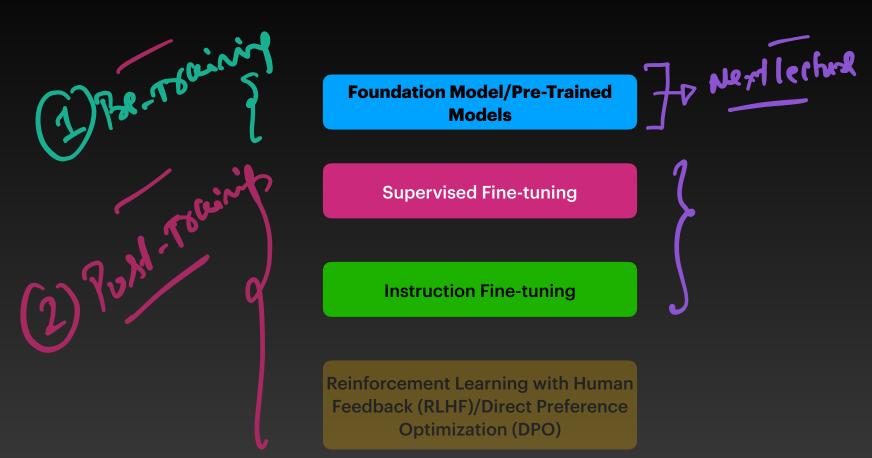
1. Types of Training

2. Llama3

3. DeepSeekV3

4. Notebook Walkthrough

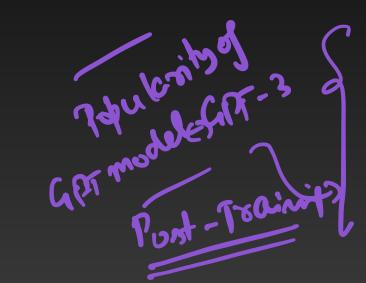
Types of LLM training

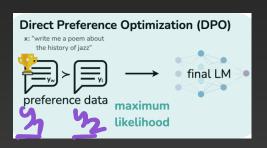


Foundation Model/Pre-Trained Models

Post-Training

Types of LLM training




Types of LLM training

Supervised Fine-tuning

Instruction Fine-tuning

Reinforcement Learning with Human Feedback (RLHF)/Direct Preference Optimization (DPO)

Why not just do a single training instead of multiple trainings for LLMs?

- Single training won't work
- 2. Multiple trainings also different sources of high quality vs medium quality data
- 3. Single Training has no foundation to build on
- Multiple Training is faster

Pre-Trained vs Instruct Model

Pre-Trained Models are trained as a Masked
Language Model and for Next Token Prediction
or Multiple Token Prediction

Instruct Fine-tuning is fine-tuning a pretrained model to follow instructions

Pre-Trained vs Instruct Model

Pre-Trained Models are trained as a Masked
Language Model and for Next Token Prediction
or Multiple Token Prediction

Instruct Fine-tuning is fine-tuning a pretrained model to follow instructions on a wide variety of tasks

Pre-Trained vs Instruct Fine-tuned Model

Pre-Trained

Input: "The red fox ____"
Output: "chased"
Input: "The red fox chased the ____"
Output: "blue"
Input: "The red fox chased the blue ____"
Output: "bird"

Instruct Fine-tuned

Input: "You are to complete the following sentence. Sentence: 'The red fox ' "
Output: "The red fox chased the blue bird. And the bird flew away in the nick of time!"

Instruct Fine-tuning vs Supervised Fine-Tuning

Instruct Fine-tuning is fine-tuning a pre-trained model to follow instructions on a wide variety of tasks

Supervised Fine-tuning is fine-tuning the pretrained LLM on specific tasks: Sentiment analysis, text summarization, question answering, intent detection, etc

Instruct Fine-tuning vs Supervised Fine-Tuning

Instruct Fine-tuning is fine-tuning a pre-trained model to follow instructions on a wide variety of tasks

Supervised Fine-tuning is fine-tuning the pretrained LLM on specific tasks: Sentiment analysis, text summarization, question answering, intent detection, etc

SFT vs Instruct Fine-tuned Model

Supervised Fine-tuning

Input: "I am not feeling good today"
Output: "Unhappy"

Sentiment Anoly

Input: "I would love to go to New York and spend time on Times Square"

Output: "New York, Times Square"

Input: "What is the tallest mountain in the world?" 'Output: "Mount Everest"

Instruct Fine-tuning

Input: "You are to complete the following sentence. Sentence: 'The red fox ' "
Output: "The red fox chased the blue bird. And the bird flew away in the nick of time!"

Instruct Fine-tuning vs Supervised Fine-Tuning

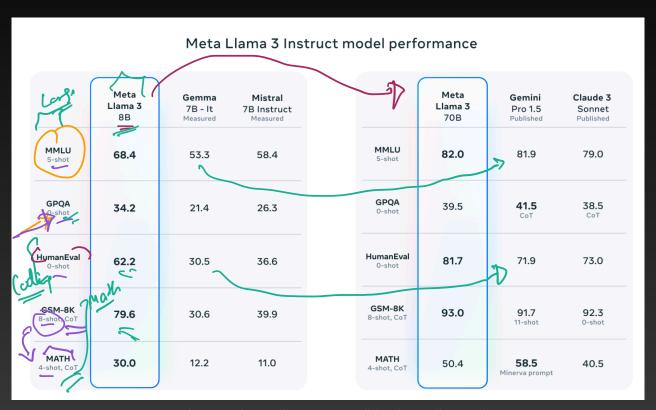
SFT trains a pre-trained LLM to do well on specific NLP tasks.

Instruction Fine-tuning looks at the ability of an LLM to follow instructions on variety of tasks.
There is no clear indication of task + makes the LLM behave more like an AI agent

ICE #1

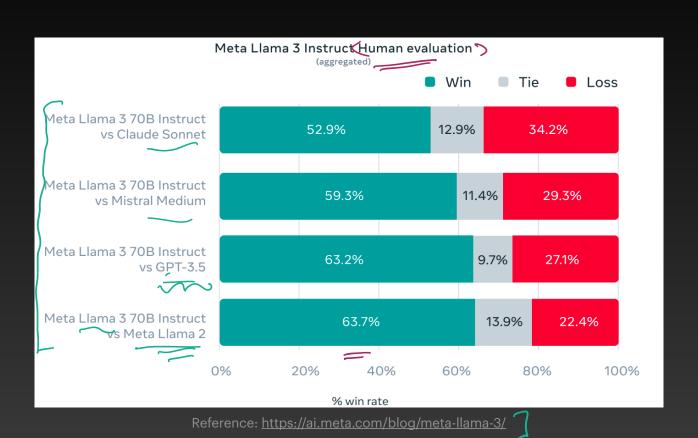
What is the loss function for SFT?

Cross-entropy


Quadratic loss

What is the loss function for Instruct models?

Cross-entropy


Quadratic loss

Llama 3 Instruct Performance

Reference: https://ai.meta.com/blog/meta-llama-3/

Llama 3 Instruct Performance

ICE #2

If you had to fine-tune a LLM model that can detect an emotion from a review - which would you pick?

Fine-tune an instruct model

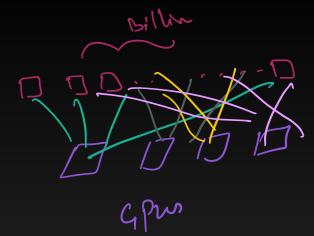
Fine-tune the pre-trained model

Fine-tune the SFT model

Llama2 vs Llama3

7 times larger pre-train data set. 15 Trillion
Tokens of data ~ 150 million books
High-quality filters to filter out bad data in
training - Use Llama2
Better "data mix" - Trivia, STEM, coding,
historical knowledge

Larger model means better performance (8B vs 70B)


But more data = better performance (also avoids over-fitting). Log-linear improvement from 200B to 15T tokens

Data Parallelization

Model Parallelization

Latent Attentior

Mixture of Experts

Data Parallelization

Model Parallelization

Latent Attention

model townstain

Mixture of Experts

H100 GPV
80GB Romade model
70B promide model
4 GPVs reeded
4 GPVs reeded

Data Parallelization

Model Parallelization

Latent Attention

~>peopseet 13

Mixture of Experts

Data Parallelization

Model Parallelization

Latent Attention

Mixture of Experts

~ worden deepseek 13

ICE #3

In the model parallelism regime - Assume a new **DeepFetch** model got released on the market with 1 trillion parameters. Assume that for pretraining, you are using H100 GPUs with 80 GB ram. How many GPUs would you need to have to hold the model in memory?

1.	2!	5
2.	50	b
1. 2. 3. 4.	7!	5
4.	10	(

1 Trillion persons

1 Trillion persons

2000

= 5000

= 5000