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House Keeping Items

O�ce Hours and Review Hours

Assignment 1 due this weekend

Assignment 2 to be assigned this Friday

Any questions?
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Deep Learning Reference

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by
Goodfellow and Bengio et al Bengio et al
Deep Learning History
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/


Recap from Last time!

Introduction to Perceptron

Perceptron and Logistic Regression

OR and AND functions
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Recap
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Perceptron
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Perceptron
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OR and AND Functions
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Perceptron to Logistic Regression

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 10 / 80



Logistic Regression

LR fundamentals

Linear Model

Want score wT x i > 0 for yi = +1 and wT xi < 0 for yi = �1!

If linearly separable data, above is feasible. Else, minimize error in
separability!!
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Logistic Regression

Probability for a class

In LR, the score, wT x is converted to a probability through the sigmoid
function. So we can talk about P(ŷ i = +1) or P(ŷ i = �1)

Sigmoid Function
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LR represented Graphically
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Logistic Regression

LR Prediction

ŷi =
1

1 + e�ŵT xi

LR Loss

Assume that yi = 0 or yi = 1 (i.e. the negative class has a label 0).
Then the binary cross-entropy loss applies to LR:

min
w

yi log(ŷi ) + (1� yi ) log(1� ŷi )
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OR and AND Functions
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Learning XOR
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XOR through 2 Layer perceptron
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Why does Linear Activation not work?
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How Step Function activation works?
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ICE #1

Which methods can learn the XOR function?
1 Logistics Regression

2 Naive Bayes Classifier

3 Decision Trees

4 Support Vector Machines
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2 Layer Neural Network
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Deep Learning: Activations, FFN and more
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Choices for Non-Linear Activation Function

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 23 / 80



Gradient of Sigmoid and RELU
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Sigmoid vs RELU
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RELU vs Leaky RELU
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Multi-Layer Perceptron (MLP)
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Breakout Session: Would ReLU work?

Work in your breakouts

What weights would give a y value > 0.7 for (1, 0), (0, 1) inputs and a
value of y < -0.7 for (0, 0), (1, 1) for the ReLU function?
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The phenomenon of Overfitting
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Tensorflow Playground Demo

Tensorflow Playground Demo
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https://playground.tensorflow.org


Computer vision before deep learning
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Computer vision after deep learning
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Feed-forward Deep Learning Architecture Example

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 33 / 80



Feed-forward Deep Learning Architecture Example

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 34 / 80



Feed-forward Deep Learning Architecture Example

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 35 / 80



Feed-forward Deep Learning Architecture Example
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ICE #2

Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has
1000 neurons. Let the input layer be raw pixels from a 100x100 image and
the output layer has 10 dimensions, let’s say for a 10 class image
classification example. How many total parameters exist in the DNN
model?

1 10 million parameters

2 11 million parameters

3 12 million parameters

4 13 million parameters
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Training a DNN

SGD with mini-batch

SGD mini-batch is the staple diet. However there are some learning rate
schedulers that are known to work better for DNNs - Such as Adagrad
and more recently, ADAM. ADAM adapts the learning rate to each
individual parameter instead of having a global learning rate.

How do we compute gradient in a DNN?

Back-propagation!
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Forward Propagation vs Back-propagation
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Back Propagation explained
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Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules
behind deep learning and beyond (including for example ChatGPT). What
exactly is back prop? It is just a way to unravel gradient computation in
the neural network. Back prop is how we would compute the gradient in
a neural network.

Back Prop as information flow

It can also be thought of as flow information from the error in the output
(the loss function) down to the weights. Update the weights so we don’t
make this error next time around. Back prop is a way to do gradient
descent in neural networks!
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Good vs Bad Local minima
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Hyper-parameters in Deep Learning

ICE #3: Which of the following is not a hyper-parameter in deep learning?

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 All of the above
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Hyper-parameters in Deep Learning

Hyper-parameters

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 Type of non-linear activation function used

5 Anything else?
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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Over-fitting in DNNs

How to handle over-fitting in DNNs

1 A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

2 Weight regularization can help - `1, `2
3 More common over-fitting strategy for DL?

4 Dropouts!

5 Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How’s this di↵erent from
regular validation we were doing earlier??

6 Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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Taking care of Over-fitting: Dropouts
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Tensorflow Playground Demo

Tensorflow Playground Demo
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More DL Architectures

Neural Networks Zoo

Zoo Reference

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 51 / 80

https://www.asimovinstitute.org/neural-network-zoo/


More DL Architectures

Neural Networks Zoo
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Auto Encoders
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ICE #4

PCA vs Auto Encoder

Which of the following statements are true ?

1 Both PCA and Auto Encoders serve the purpose of dimensionality
reduction

2 They are both linear models but one uses a neural nets architecture
and the other is based on projections

3 PCA is robust to outliers while Auto Encoders are not

4 Auto Encoders are as better than Glove Embeddings to find low-dim
embeddings for words
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PCA vs Auto-Encoders
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AutoEncoders and Dimensionality Reduction

Visualization Performance

Auto Encoder Reference Paper

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 56 / 80

https://www.cs.toronto.edu/~hinton/science.pdf


AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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AutoEncders Summary

1 Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

2 Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

3 Anything else?

4 Auto Encoders can learn convolutional layers instead of dense layers -
Better for images! More flexibility!!
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Removing obstacles in images
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Removing obstacles in images

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT k Lecture 3January 15, 2025 61 / 80



Coloring Images
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De-noising Auto Encoders
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De-noising Auto Encoders
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De-noising Auto Encoders

Details

Just like an Auto Encoder

Di↵erence: Noise is injected in the inputs on purpose but output is a
clean data point.

This forces the Auto Encoder to “de-noise” data, esp. useful for
images!

Esp. useful for a category of objects or images (e.g. digit recognition
or face recognition, etc)
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ICE #5

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

1 Perceptron

2 Auto Encoder

3 De-noising Auto Encoder

4 K-means++

5 None of the above

6 All of the above
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Breakouts Time 1

5 mins

Discuss in your groups what are some real-world applications of any or
many of the Auto Encoder Architectures we discussed so far you can think
of in your area of work or in a standard context e.g. images.
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Sequence structure in NLP

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

Example

I don’t think its a bad car at all! ! Positive Sentiment

Example

Have to carry the context(state) from some-time back to fully
understand what’s happening!
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Sequence to Sequence Model (LSTM) Applications
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Sequence to Sequence Model (LSTM) Applications
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Breakouts Time #2

Auto-complete — 5 mins

Let’s say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). How would you use what we have
learned so far to model this? What architecture would you use? What
would be your data? And what are some pitfalls or painpoints your model
should address?
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Extra Slides
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Sparse Auto Encoders

Sparse AE
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https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6
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Sparse Auto Encoders

Input Image that maximizes activations for each neuron in hidden layer!
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Sparse De-noising Auto Encoders
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