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Deep Learning References

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by
Goodfellow and Bengio et al Bengio et al
Deep Learning History

Embeddings
SBERT and its usefulness SBert Details J
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https://www.deeplearningbook.org/
https://developer.nvidia.com/blog/deep-learning-nutshell-history-training/
https://arxiv.org/pdf/1908.10084.pdf
https://www.sbert.net/

| ast lecture

@ Training Deep Learning Model
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@ Training Deep Learning Model
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| ast lecture

@ Training Deep Learning Model
@ Back-propagation as a way of computing gradients
@ Hyper-parameter tuning

@ Embeddings and Cosine Similarity
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-
| ast lecture

@ Training Deep Learning Model -

@ Back-propagation as a way of computing gradients

@ Hyper-parameter tuning ~
@ Embeddings and Cosine Similarity/

@ Movie Recommendations, Cold Start and Content Based
Recommendations
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| ast lecture

@ Training Deep Learning Model

@ Back-propagation as a way of computing gradients
@ Hyper-parameter tuning

@ Embeddings and Cosine Similarity

@ Movie Recommendations, Cold Start and Content Based
Recommendations

o Search demo through web app""
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oday’s Lecture

@ Quick Recap of Embeddings and Cosine S|m|lar|ty

(

o Glove Embeddings

@ Sentence Embeddings with Glove and Sentence Transformer
@ In-Class Coding Exercise (second half)]

e

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 27, 2025 4 /24



.
LLM Market-Disruption

DeepSeej:evelopments shakes up stock prices

—

Benchmark performance of open-source DeepSeek matching that of top
LLMs on reasoning with less cost, parameters,

OpEN-Source.

while also being

Market Summary > NVIDIA Corp

p—
118.58 uso

-24.04 46.86%) ¥ today
C ose :10PM EST - Disclaimer
After hotls 119.69 +1.11 (0.94%)
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4:00PM

10:00AM 12:00 PM
Open 124.80 Mkt cap 2.90T
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I
Recap of Cosine Similarity in Embeddings
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In-Class Exercise 1 on Cosine Similarity - Work in groups
of 3

C@()( V) Vﬂ = V. \97:
1%L, (W

Let's reference back to the last lecture. Let's consider three dimensional
embeddings for movies. Say we have 3 movies: Avatar, lronman and
Rainman. Given that you likesAvatar, which movie would be good to
recommend between Ironman and Rainman and why? Use the concept of
embeddings and cosine similarity to derive your result.

Let's say Avatar'mﬁl = [1,2,2], Ironman’s embedding is

& = 3,7, 8] and Rainman’s embedding is e3 = [1, —2, 6].

— =
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Word2Vec U o ‘ﬂ 'y E‘A‘} (N

Model
/

e( [\M}é‘l :

qn o

/

Is based on the skip-gram model! How is training done? It's

semi-supervised!!

4
Source Text Training
Sampies
g \J o—_/
-quick brown |fox jumps over the lazy dog. == (the, quick)
e (the, brown)
The brown |fox|jumps over the lazy dog. == (quick, the)
(quick, brown)
(quick, fox)
The quick-fox jumps|over the lazy dog. = (brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)
The|quick brown.jumps over|the lazy dog. = (fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)
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Word2Vec

=
Architecture \ ¥
Output Layer
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Word2Vec representation

v return <identifier>
' q(,\p M > 8 )’( , o #
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@

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT

January 27, 2025

10/ 24



ICE 42

What do the embedding dimensions of word2vec represent?
© Fixed words decided by word2vec
@ Topics that are common among the words

© Parts of speech of the words (nouns, adjectives, etc)

@ Book titles that these words came from

(Univ. of Washington, Seattle) EEP 596: LLMs: From Transformers to GPT January 27, 2025 11 /24



Product2Vec
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Represent products in product space
with a large matrix of embedding
coordinate vectors “L”

B/e) = (s

o 19/18 14 ... 04
06 01 1.0 1.6 --- 1.9
L=106 16 16 16 --- 18
06 1.0 01 1.6 --- 06
08 14 19 08 --- 0.7

We obtain these embedding vectors from the
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I
Product2Vec application
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I
Product2Vec application

| |

||
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Product2Vec application
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.
Product2Vec application

More volume from Gevalia
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Breakout 1: Discuss your favorite X2Vec!

X2Vec

In your group - Discuss an application that requires machine learning. Be
specific about it - Example, data, features, the type of problem
(classificaiton, clustering, etc). Can you see how X2Vec would benefit your
application. What would be your X in this case? How would you learn
X2vec for your application? And how would you use it?
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e
Let's list out some X's in X2Vec!
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Generating Sentence Embeddings from Glove

Averaging embeddings of words: |f we have a word embedding, how
do we generate the sentence embedding?
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Generating Sentence Embeddings from Glove

Averaging embeddings of words: |f we have a word embedding, how
do we generate the sentence embedding?

Simple Solution: Just average the word embeddings
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BERT - Bi-directional Encoders from Transformers
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I
Embeddings

BER
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I
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?
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I
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?

|CE: Supervised or Un-supervised? J

© Are the above two tasks supervised or un-supervised?
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I
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?

|CE: Supervised or Un-supervised? J

© Are the above two tasks supervised or un-supervised?

Data set!
English Wikipedia and book corpus documents! J
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BERT - Bi-directional Encoders from Transformers
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT | ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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Let's work on an in-class coding exercise
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