Llama3 & DeepSeek v3 (part 2)

Architecture | Inference

Dr. Karthik Mohan, March 3rd 2025

Today's Talk

1. Llama3 Arch

2. DeepSeekV3 Arch

3. Benchmarking out of box

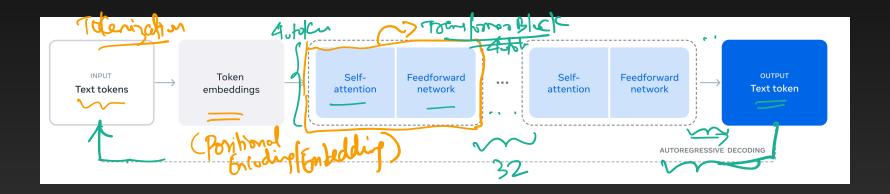
4. Notebook Walkthrough

Part 1:- Task: Inkert Defection

Simple Complex

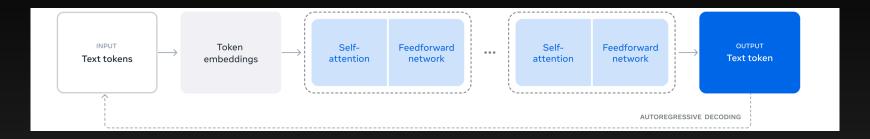
Simple More than we interf

Stable Deffusion Larged arrighment


(Tweek)

Llama3 Herd

Herd of models including 405B LM, 70B, 8B, 1B versions and also Llama Guard 3 for input/output safety


Llama 3 Herd of Models

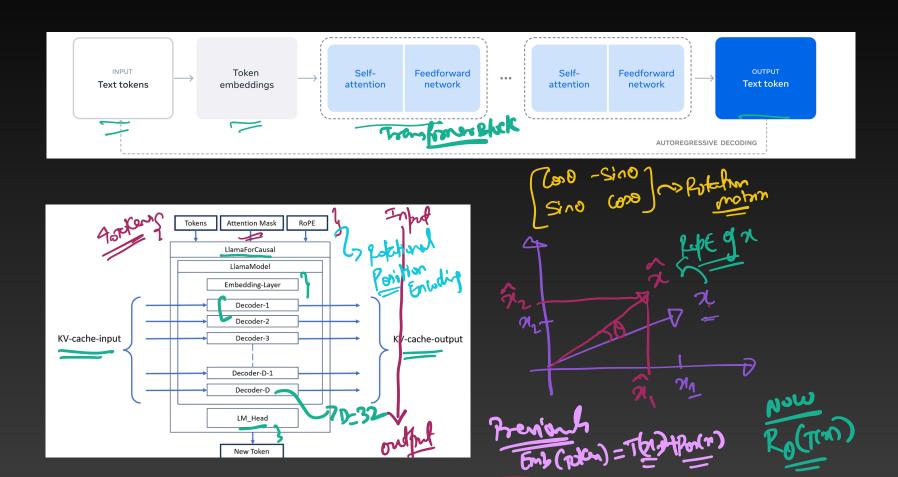
1 19C xcm	^ _		_		
	Finetuned	Multilingual	Long context	Tool use	Release
Llama 3 8B	X	\mathcal{X}^1	×	X	April 2024
Llama 3 8B Instruct	_	×	×	X	April 2024
Llama 3 70B	X	$ oldsymbol{\chi}^1$	×	X	April 2024
Llama 3 70B Instruct	✓	×	×	X	April 2024
Llama 3.1 8B	×	✓	√	X	July 2024
Llama 3.1 8B Instruct	✓	✓	√ (,	✓	July 2024
Llama 3.1 70B	×	✓	1	X	July 2024
Llama 3.1 70B Instruct	✓	✓	✓	✓	July 2024
Llama 3.1 405B \(\)	×	✓	✓	X	July 2024
Llama 3.1 405B Instruct	✓	✓	✓ J	\checkmark	July 2024
100					

Tokenization

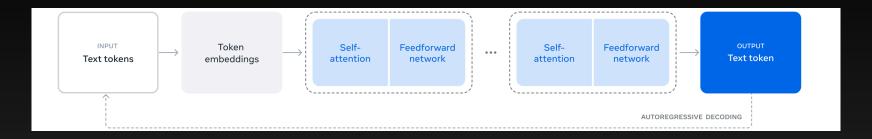
```
def print tokens with ids(txt):
      tokens = tokenizer.tokenize(txt, add_special_tokens=False)
      token_ids = tokenizer.encode(txt, add_special_tokens=False)
      print(list(zip(tokens, token_ids)))
  prompt = """<|begin_of_text|><|start_header_id|>system<|end_h@ader_id|>
Based on the information provided, rewrite the sentence by changing its tense from
 She played the piano beautifully for hours and then stopped as it was midnight.<
  11 11 11
  print_tokens_with_ids(prompt)
  # Token and Token ID
                           128000, ('<|start_header_id|>', 128006), ('system', 912
  > [('<|begin_of_text|>
   [128000, 128000, 128006,
                              9125, 128007,
                                               271, 29815,
                                                               389,
                                                                       279,
                              11, 18622,
                                               279, 11914,
              2038,
                      3984,
                                                               555, 10223,
                                                                              1202,
             43787,
                       505,
                              3347,
                                       311,
                                              3938,
                                                        13, 128009, 128006,
                                                                               882,
            128007,
                       271,
                              8100,
                                      6476,
                                               279, 27374, 32719,
                                                                       369,
                                                                              4207,
               323,
                      1243, 10717,
                                       439,
                                               433,
                                                       574, 33433,
                                                                        13, 128009,
            128006.
                     78191, 128007,
                                       2717
```


Assume that Llama4 is trained on 40T tokens of data. It has a context window of 256k tokens and has a tokenizer vocab size of 108k tokens and each token has a token embedding size of 4096.

What is the number of classes present in the classifier of the LM head to generate the next token in auto-regressive decoding?

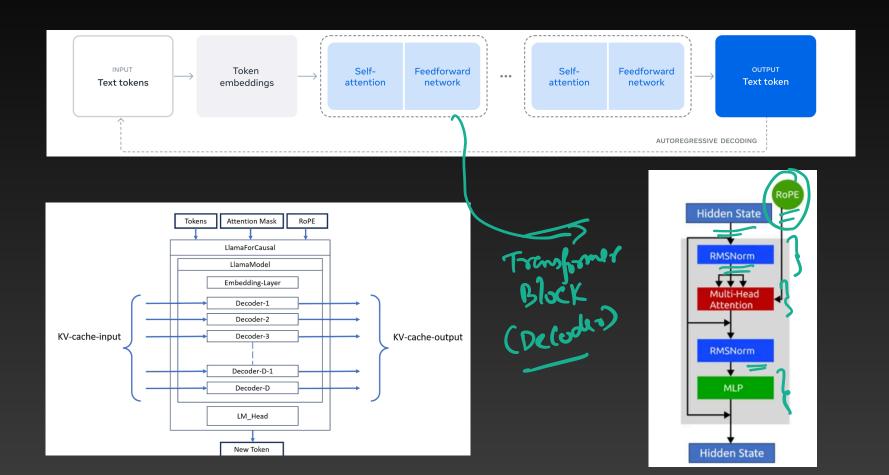

a) 256k

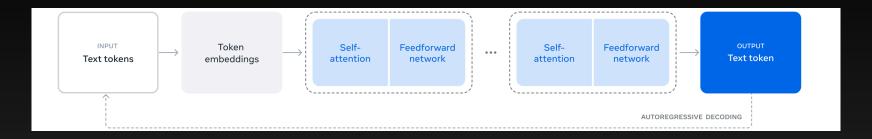
b) 40T


c) 108k

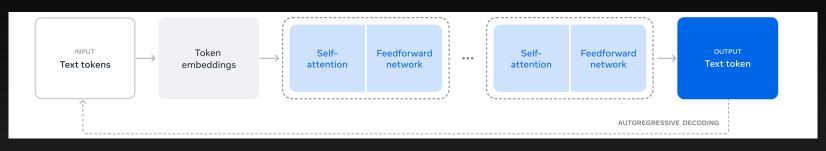
d) 128k

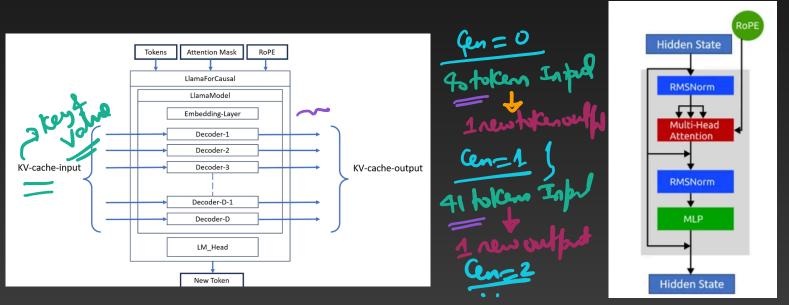
e) 4096

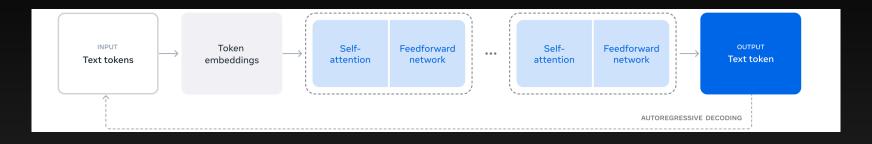


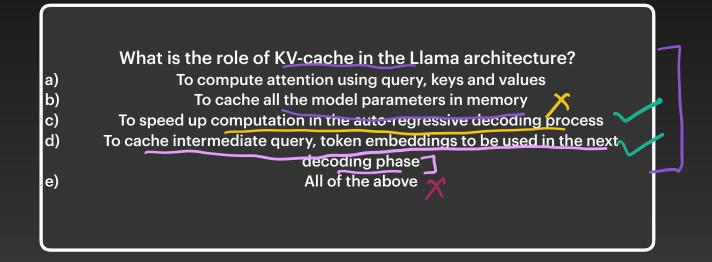

$$\hat{A} = \begin{cases} \cos \theta - \sin \theta \\ \sin \theta \end{cases} \Rightarrow \begin{cases} \sin \theta \\ \cos \theta \end{cases} \Rightarrow \begin{cases} \cos \theta \\ \cos \theta \end{cases} \Rightarrow \end{cases} \end{cases} \Rightarrow \begin{cases} \cos \theta \\ \cos \theta \end{cases} \Rightarrow \begin{cases} \cos \theta \\ \cos \theta \end{cases} \Rightarrow \begin{cases} \cos \theta \\ \cos \theta \end{cases} \Rightarrow \begin{cases} \cos \theta \end{cases} \Rightarrow \begin{cases} \cos \theta \\ \cos \theta \end{cases} \Rightarrow$$

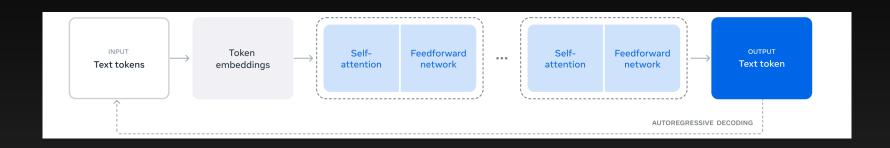
Assume that input sentence has 100 words and tokenized into 150 tokens. The 150 tokens are now assigned a token embedding and passed through 64 decoder blocks of Llama model. At the very end, a new token is also generated. How many tokens exist right after the 64 decoder blocks and how many new tokens are generated?

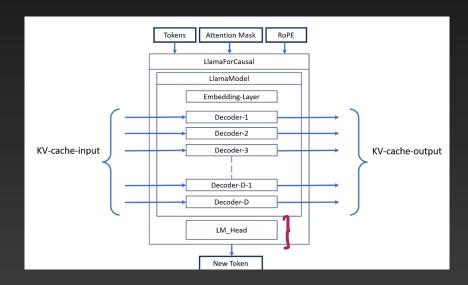

a) 150,64
b) 64,1
c) 1,1
d) 150,1

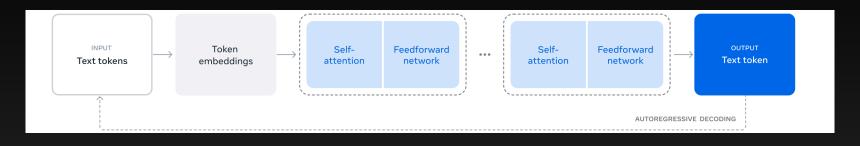


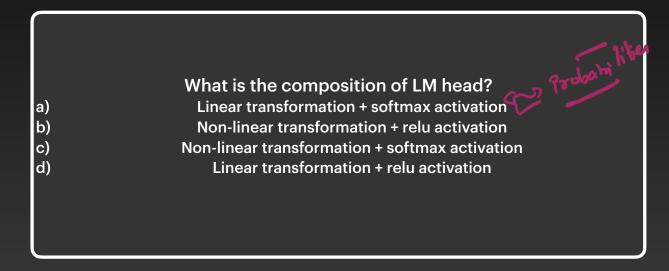


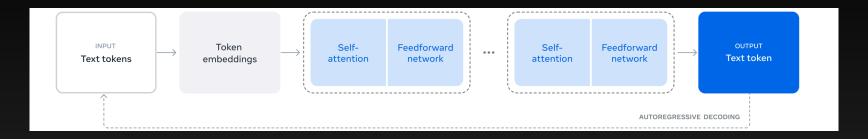

Assume that each word in a sentence corresponds to a token (for simplicity). Consider the sentence: "The sun rises". Passing this into llama produces the output token as "in". How many tokens will be passed in to the next step of autoregressive decoding and what will the expected output?

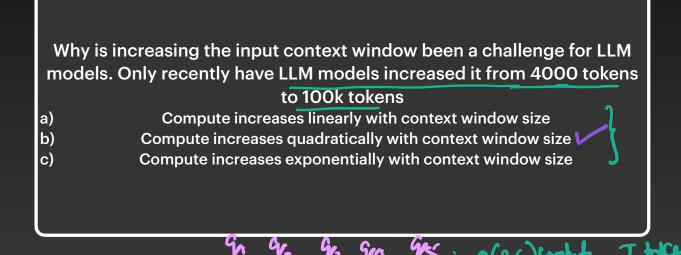

a) 3,"east"
b) 4,"east"
c) 3,"the
d) 4, "the"








ICE #5 | LM head



Llama3 Key Features

Context Window: 128k tokens
Vocab size: 128k tokens
Training data: 15T tokens
Decoder blocks: 32
Positional Embedding: RoPE

Llama2 vs Llama3

7 times larger pre-train data set. 15 Trillion

Tokens of data ~ 150 million books

High-quality filters to filter out bad data in training - Use Llama2

Better "data mix" - Trivia, STEM, coding, historical knowledge

Larger model means better performance (8B vs 70B)

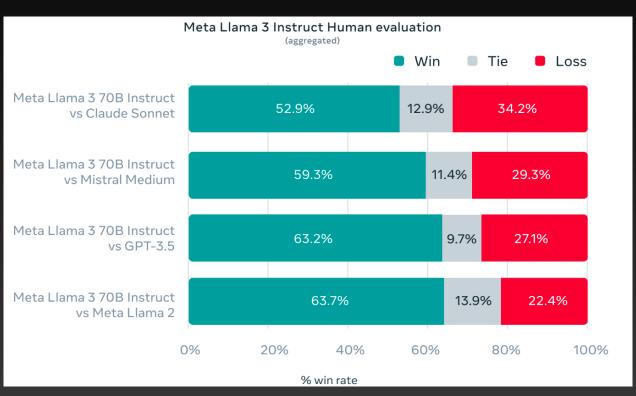
But more data = better performance (also avoids over-fitting). Log-linear improvement from 200B to 15T tokens

Llama3 vs DeepSeek

	Llama3	DeepSeek V3
Parameters	405b	405b with 37b active at inference
Architecture	Traditional Transformers (Decoder)	Transformer with MOE and MLA
Context Length	128k tokens	128k tokens
Post Training	Instruct FT	Instruct FT
RL	DPO	DPO

Llama3 Benchmarks

nak y Category	Benchmark	Liama \$ 8B	Gemma 2 9B)	Mistral 7B	Llama 370B	Mixtral 8x22B	GPT 3.5 Turb6	Llama 3 405B	Nemotron 4 340B	GPT-4 (0125)	GPT-40	Claude 3.5 Sonnet
General	MMLU (5-shot) MMLU (0-shot, CoT) MMLU-Pro (5-shot, CoT) IFEval	69.4 73.0 48.3 80.4	72.3 72.3 [△] - 73.6	61.1 60.5 36.9 57.6	83.6 86.0 66.4 87.5	76.9 79.9 56.3 72.7	70.7 69.8 49.2 69.9	87.3 88.6 73.3 88.6	82.6 78.7⁴ 62.7 85.1	85.1 85.4 64.8 84.3	89.1 88.7 74.0 85.6	89.9 88.3 77.0 88.0
Code 🗸	HumanEval (0-shot) MBPP EvalPlus (0-shot)	72.6 72.8	$54.3 \\ 71.7$	$40.2 \\ 49.5$	80.5 86.0	75.6 78.6	$68.0 \\ 82.0$	89.0 88.6	$73.2 \\ 72.8$	$86.6 \\ 83.6$	$90.2 \\ 87.8$	92.0 90.5
Math (GSM8K (8-shot, CoT) MATH (0-shot, CoT)	84.5 51.9	$76.7 \\ 44.3$	53.2 13.0	95.1 68.0	88.2 54.1	81.6 43.1	96.8 73.8	92.3^{\diamondsuit} 41.1	$94.2 \\ 64.5$	96.1 76.6	$96.4^{\diamondsuit} 71.1$
Reasoning	ARC Challenge (0-shot) GPQA (0-shot, CoT)	83.4 32.8	87.6	74.2 28.8	94.8 46.7	88.7 33.3	83.7 30.8	96.9 51.1	94.6	96.4 41.4	96.7 53.6	96.7 59.4
Tool use	BFCL Nexus	76.1 38.5	30.0	60.4 24.7	84.8 56.7	-48.5	85.9 37.2	88.5 58.7	86.5 -	88.3 50.3	80.5 56.1	90.2 45.7
Long context	NIH/Multi-needle	81.0 65.1 98.8	- - -	- - -	90.5 78.2 97.5	- - -	- - -	95.2 83.4 98.1	- - -	95.2 72.1 100.0	90.5 82.5 100.0	90.5 - 90.8
Multilingual	MGSM (0-shot, CoT)	68.9	53.2	29.9	86.9	71.1	51.4	91.6	_	85.9	90.5	91.6


Llama 3 Instruct Performance

Meta Llama 3 Instruct model performance

	Meta Llama 3 8B	Gemma 7B - It _{Measured}	Mistral 7B Instruct Measured
MMLU 5-shot	68.4	53.3	58.4
GPQA 0-shot	34.2	21.4	26.3
HumanEval 0-shot	62.2	30.5	36.6
GSM-8K 8-shot, CoT	79.6	30.6	39.9
MATH 4-shot, CoT	30.0	12.2	11.0

	Meta	Gemini	Claude 3
	Llama 3	Pro 1.5	Sonnet
	70B	Published	Published
MMLU 5-shot	82.0	81.9	79.0
GPQA	39.5	41.5	38.5
0-shot		CoT	CoT
HumanEval 0-shot	81.7	71.9	73.0
GSM-8K	93.0	91.7	92.3
8-shot, CoT		11-shot	0-shot
MATH 4-shot, CoT	50.4	58.5 Minerva prompt	40.5

Llama 3 Instruct Performance

Reference: https://ai.meta.com/blog/meta-llama-3/

DeepSeek V3