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Today'’s Talk

LoRA Fine-Tuning



Llama3 Herd

Herd of models including 405B LM, 70B, 8B, 1B

versions and also Llama Guard 3 for input/
output safety

Reference: https://arxiv.org/pdf/2407.21783
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Llama3 Architectui

Token Self- Feedforward Self- Feedforward OUTPUT
Text tokens embeddings attention network attention network Text token

AUTOREGRESSIVE DECODING




LORA Fine-Tuning

Low-Rank Adaptation of LLMs

Refers to an efficient fine-tuning procedure - where ALL weights of the
LLM are frozen. But - New and relatively fewer weights are introduced
for fine-tuning.

Reference: https://arxiv.org/pdf/2106.09685
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ICE #1

Low-Rank Matrices

Let W (dxd) be a matrix that can be thought of as a product of A (dxk)
and B (kxd). What is the rank of the matrix W?
%) At least d
o), At most d
c) At least k
d) At most k

Reference: https://arxiv.org/pdf/2106.09685
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LoRA Fine-Tuning Basis

Low-Rank Adaptation of LLMs

Based on the assumption that learned weight matrices in LLMs typically
reside in “low-dimensional” subspaces. Thus learning a low-rank matrix
can be a way to fine-tune.

Reference: https://arxiv.org/pdf/2106.09685
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ICE #2

LoRA application

In the Llama3 Transformer - What weight matrices does LoRA duplicate
for fine-tuning?
a) Query matrix
o), Key Matrix
c) Value Matrix
d) MLP matrices
e) All of the above

Reference: https://arxiv.org/pdf/2106.09685
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LoRA Fine-Tuning Features

Low-Rank Adaptation of LLMs

Can be used to fine-tune “any” LLM model by freezing entire model
Only the new low-rank weights are fine-tuned

Final model is the existing weights + the LORA adaptor weights

Latency is same at inference time - As the new weights get added in
Orthogonal to partial freezing and fine-tuning paradigm
For GPT-3 175B - reduced RAM requirement from 1.2TB to 350GB.
With r = 4, reduced the checkpoint size of the fine-tuned model
reduced from 350GB to 35MB!

Reference: https://arxiv.org/pdf/2106.09685
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ICE #3

Low-Rank Matrices

Let W (dxd) be a matrix that can be thought of as a product of A (dxk)
and B (kxd). Let’s say we have a token embedding, x of a token T, that
lives in d dimensions. If W represents the query matrix - What is the
computational complexity of computing the query vector q from the
token T?
a) O(d*d)
o) O(d*d*k)
c) O(k*k)
d) O(d*k)

Reference: https://arxiv.org/pdf/2106.09685
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ICE #4

LoRA fine-tuning

Let the embedding dimension, d be 4000. Assume that we do LoRA
fine-tuning with a LoRA rank, k of 5. If the LLM model we are fine-tuning
Is a 8b Llama 3 model. How many new parameters are we introducing
with the LoRA fine-tuning?

a) 10 MM
o)) 20 MM
c) 30 MM
o) 40 MM

Reference: https://arxiv.org/pdf/2106.09685



https://arxiv.org/pdf/2106.09685

LoRA Fine-Tuning vs Partial Freezin

LoRA vs Partial Freezing

*  Computer vision models, for example get fine-tuned by freezing all
but last 3 layers of CNN model on the fine-tuned data set
* In the context of LLMs - What are the pros/cons of LoRA as compared
to the partial freezing of weights approach for fine-tuning?

Reference: https://arxiv.org/pdf/2106.09685
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ICE #5

Low Rank Matrix Factorization

Recall the context of low-rank factorization of data matrix into users
factors and movies factors. Let X = UV be this factorization. Where (i, j)
element of X represents whether user i liked movie j or not (1 for like and
O for not). In this case if we have millions of users and 100k movies - X is
a large matrix. But typically the column dimension of U is limited to 50
or 100. Why would 100 dimensions be sufficient?

a) It’s a low rank factorization - so 100 should be sufficient

b) Its computationally expensive to consider 1000 dimensions or more

c) The user factors and movie factors have a common theme of genres
and there are not too many genre combos

d) It works experimentally and hence 100 is sufficient

Reference: https://arxiv.org/pdf/2106.09685
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