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Today’s Talk

1. Introduction and Motivation

2. Semantic Search
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Collaborative Filtering
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Collaborative Filtering
Through Matrix Completion!
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Through Matrix Completion!
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Collaborative Filtering
Through Matrix Completion!

Linear Algebra in Action

Q: What is the closest Linear Algebra method
that looks similar to the above factorization?




Collaborative Filtering
Through Matrix Completion!

Linear Algebra in Action
Q: What is the closest Linear Algebra method
that looks similar to the above factorization?
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SVD of a matrix
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SVD of a matrix

Every matrix has an SVD!

2
. I<f
on®
l

Slgma

AN
L’V X=uzv’ L’Sﬂ'j\'b)""lm



SVD of a matrix

Hence: Data Matrix also has an SVD!
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Collaborative Filtering
Through Matrix Completion!
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Collaborative Filtering: Advanced SVD method or Iterative SVD method
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Content Based Filtering

vs Collaborative Filtering
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Content Based Filtering

Embeddings
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/ Obtain these embeddings?
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Embeddings Interpretation

Embeddings Latent Dimensions —, Interpretation
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Embeddings | Vector Representations
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Embeddings in Action
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Embeddings in Action s

l.) : u&\.
&?\){%
/ Men in Black

Smaller Angle = Higher Cosine Similarity
Larger Angle = Lower Cosine Similarity

N ez
Arrival

High Cosine Similarity

—

SALLY..

7y

£-3

o o

When Harry met




Embeddings in Action s

ot
ST - - e
NN~
i
Men in Black
Te g
) e x'y )
!' < CosineSimilarity(x,y) = <

[xl Ty



VRSN RVRS VI
B ¢ .

Minions B eeillve
NN~

Men in Black

=3

When Harry met
T |

I‘\A;/i\)-

n—

[
—1 < CosineSimilarity(x,y) = <
= — Ul




Cauchy-Schwarz Inequality!
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Cauchy-Schwarz Inequality!
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Embeddings in Action
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What if | like both sci-fi and romance?
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Like both Sci-fi and Romance
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Replace movies

with “words” and
This still works!
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Word and Sentence Embeddings

This embeds a word

Road

This embeds a sentence

/

| love to drive cars. And paint flowers too!



Word and Sentence Embeddings

How do we
Obtain these embeddings?

A: Through a DL model!
Maybe last but one hidden layer activations



Word and Sentence Embeddings
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We will cover Sentence BERT when we
Get to Transformers!




Semantic Search | Vector Search

Semantic Search:
Enables us to find

the closest category for
A given sentence

This embeds a word

Road

This embeds a sentence

/

| love to drive cars. And paint flowers too!
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Semantic Search | Vector Search

Typical Search:
Based on look-up. May
Not handle semantics.
Uses Trie Datastructure

This embeds a word

Road

This embeds a sentence

/

| love to drive cars. And paint flowers too!
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Semantic Search | Vector Search

This embeds a word

Road

This embeds a sentence

/

| love to drive cars. And paint flowers too!

Typical Search:
Based on look-up.

Down-sides?



Semantic Search | Vector Search

Food

Road

Embeddings

Cars

| love to drive cars. And paint flowers too!

Equal Cosine Similarity
— —7

Flowers



Semantic Search | Vector Search

Food

Road

Embeddings

Cars

| love to drive cars. And paint flowers too!

Equal Cosine Similarity

;oo — Flowers

Lower Cosine Similarity

What's the closest category

for the following sentence? “I love to drive cars. And paint flowers too!"



Semantic Search | Vector Search
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Highest cosine similarity based on
vector search: Flowers and Cars



Vector Arithmetic!




Demo on Semantic Search
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