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Model predicts Amy Likes 
Arrival 

Linear Algebra in Action 
Q: What is the closest Linear Algebra method 
that looks similar to the above factorization?

A: SVD = Singular Value Decomposition
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X U Sigma V^T

X = UΣVT

Hence: Data Matrix also has an SVD!
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Collaborative Filtering: Advanced SVD method or Iterative SVD method

U Sigma V^T
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CosineSimilarity(x, y) = xTy
| |x | | | |y | |

≤ 1−1 ≤

|xTy | < = | |x | | | |y | |

| |x | |2 Euclidean Norm of x
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Word and Sentence Embeddings

How do we  
Obtain these embeddings? 

A: Through a DL model! 
Maybe last but one hidden layer activations

Glove Embeddings Sentence 
BERT

We will cover Sentence BERT when we 
Get to Transformers!
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What’s the closest category 
for the following sentence?  “I love to drive cars. And paint flowers too!"

Highest cosine similarity based on  
vector search: Flowers and Cars
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What is King - Man + Woman?



Demo on Semantic Search


