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Last Time

tSNE

Agglomerative Clustering
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Lectures and Programming Assignments

Week Lecture Material Assignment
1 Linear Regression Housing Price Prediction
2 Classification Spam classification (Kaggle)
3 Classification Flower/Leaf classification
4 Clustering MNIST digits clustering
5 Anomaly Detection Crypto Prediction (Kaggle + P)
6 Data Visualization Crypto Prediction (Kaggle + P)

and Embeddings
7 Deep Learning Visualizing 1000 images
8 Deep Learning (DL) ECG Arrythmia Detection
9 DL in NLP TwitterSentiment Analysis (Kaggle + P)
10 DLs in Vision TwitterSentiment Analysis (Kaggle + P)
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Today

a Agglomerative Clustering Wrap up

b SVD and Dimensionality Reduction
c Word2Vec and X2Vec
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Agglomerative Clustering: Spiral and Donut!
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Dendrogram
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Dendrogram
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Cut Dendrogram
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Dendrogram ICE

ICE #2

How many clusters would we have if we use this threshold to cut?
a 4

b 5
c 6

d 7
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Cut Dendrogram
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Agglomerative Clustering — Hyper-parameters
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Linkage examples
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Dendrogram ICE

ICE #1

Which linkage function is more likely to detect spiral clusters?
a Single Linkage

b Centroid Linkage
c Complete Linkage

d Any Linkage
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Centroid Linkage Applied to Spiral
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Single Linkage Applied to Spiral
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Where Centroid Linkage Works!
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Dendrogram
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Dendrogram
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Comparison of Clustering Algorithms

Quick comparison

k-means Agglomerative Clustering
Computation O(Ndk) O(N2

d)
Type Spherical Arbitrary shapes

Few more points..
a Weigh computational complexity with complexity of clustering -

kmeans vs agglomerative

b Agglomerative distance choices yield di↵erent sets of clusters (single
linkage vs centroid)

c Clustering in practice is an art

d However, quality of clustering can be evaluated - E.g. through Dunn
Index!
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Dimensionality Reduction and Embeddings

Basic Idea of Embeddings

Can you capture information in an image concisely, in a vector? Perhaps a
500x500 pixel image can be reduced to a 256 dimensional vector, z and z

may have most of the information about the original image that can help
you make predictions on the image - Say image classification or object
detection or image captioning! Say you have 300k words in a vocabulary.
Can you capture the semantics and information contained in each word
concisely, maybe through a 512 dimensional vector? Perhaps this
representation can help you solve a word riddle such as: “What is King -

Man + Woman?” Concise representations of this kind are referred to as
Embeddings.
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Dimensionality Reduction and Embeddings

Today

Today we will learn about embeddings learned through SVD and one
specifically for words as well. Embeddings also overlap with the idea of
dimensionality reduction - Which can also serve the purpose of
compressing data. What’s an application of data compression that we
use on a daily basis?

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 10 February 7, 2023 21 / 57



SVD - Classic Method

SVD

Every matrix X 2 Rm⇥n has a Singular Value Decomposition:

X = U⌃V T
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SVD Example
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SVD Example
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SVD Example
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SVD Example
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SVD Example
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SVD Example
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SVD Example
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SVD Example
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Word co-occurence

Example Sentence

I like NLP. I enjoy flying. I like deep learning.
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Other Popular Low-dimensioanl Embeddings

PCA

Principal components Analysis (based on SVD) tells us the direction of
maximum variance in the data!
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PCA
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PCA

PCA model

Obtained through the eigen-decomposition of the sample covariance matrix
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SVD and PCA

PCA model

SVD on the covariance matrix is the same as Eigen-decomposition of
covariance matrix.
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PCA Embeddings

PCA Embeddings

Projecting data onto the PCA directions also gives us low-dimensional
embeddings.
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Principal Components and Embeddings!

Principal Components

If XT
X = V⌃2

V
T is the co-variance matrix, then V represents the

principal components and V
T
X

T represents the embeddings or
compressed representation of the data points!
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ICE #3

SVD manipulations

Let X = U⌃V T . The projection of the data onto the principal
components is given by V

T
X

T . If X is N ⇥ d , what’s the dimension of
the projection matrix with 3 principal components?

a 3⇥ d

b 3⇥ N

c N ⇥ 3

d d ⇥ N
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ICE #4

Projection Dimension

Consider the figure above. Let V1 2 Rd be the first principal component
and the project of a data point x 2 Rd onto V1 is given by V

T
1 x . Now let

V 2 Rd⇥k be the entire set of principal components. When x 2 Rd gets
projected onto all the principal components, what’s the dimension of the
projected vector?

1 d

2 k

3 N

4 1
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ICE #5

Images PCA (Work in groups of 2)

If you have 1000 face images and did a PCA on these images and found
that 10 Eigen faces would be su�cient to reconstruct the images
accurately. You stored compressed representations of the images on your
laptop and to reconstruct the image, you send it to a server that then
gives you back a re-constructed image. What would be the compression
factor for the compressed representation you have on your laptop and
obtained from PCA? Assume that each image is 1000⇥ 1000 pixels?

a 1000x

b 10000x
c 100000x

d 1MMx
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PCA for Images
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PCA for Images - Eigen Faces
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PCA for Images - Re-construction
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SVD PCA - One main Issue

1 Not scalable!

2 Imagine millions of movies and millions of people watching it - How
do you compute the SVD for it?

3 Complexity is O(N2
k) where k is the latent dimension of the matrix.

4 Not very flexible

5 Also not robust to outliers

6 Uses a bi-linear model instead of a non-linear model
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Word2Vec

Skip Gram Model

Is based on the skip-gram model! How is training done? It’s
semi-supervised!!
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Word2Vec

Architecture
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Word2Vec representation
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Product2Vec
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Product2Vec application
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Product2Vec application
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Product2Vec application
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Product2Vec application
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Breakout: Discuss your favorite X2Vec!

X2Vec

In your group - Discuss an application that requires machine learning. Be
specific about it - Example, data, features, the type of problem
(classificaiton, clustering, etc). Can you see how X2Vec would benefit your
application. What would be your X in this case? How would you learn
X2vec for your application? And how would you use it?
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Comparison of Dimensionality Reduction Methods

Method Utility Pros Cons
SVD Low-dim embeddings Easily Scalability

available Accuracy
PCA Same as SVD EigenFaces Outlier issues
Word2Vec Semantic understanding Non-linear
Sentence2Vec Comparing sentences
Tweet2Vec Understanding Tweets
Product2Vec Recommending products
X2Vec
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Anomaly Detection: Arrythmia
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Broad list of methods

Categorization

O✏ine anomaly detection

Real-time anomaly detection

Categorization

Time-series data anomaly detection

Regular anomaly detection
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Summary

a SVD - Bi-linear model

b PCA application of SVD to understand variation in data
c Application of PCA to images - Eigen faces

d PCA can be used to compress images
e Non-linear models more accurate and flexible

f Word2vec uses a skip-gram non-linear model
g Word2vec an example of context based learning (semi-supervised

learning)

h Can construct X2Vec for any X provided you have su�cient data

i Introduction to Anomaly detection
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