EEP 596: Adv Intro ML || Lecture 10 Dr. Karthik Mohan

Univ. of Washington, Seattle

February 7, 2023

• tSNE

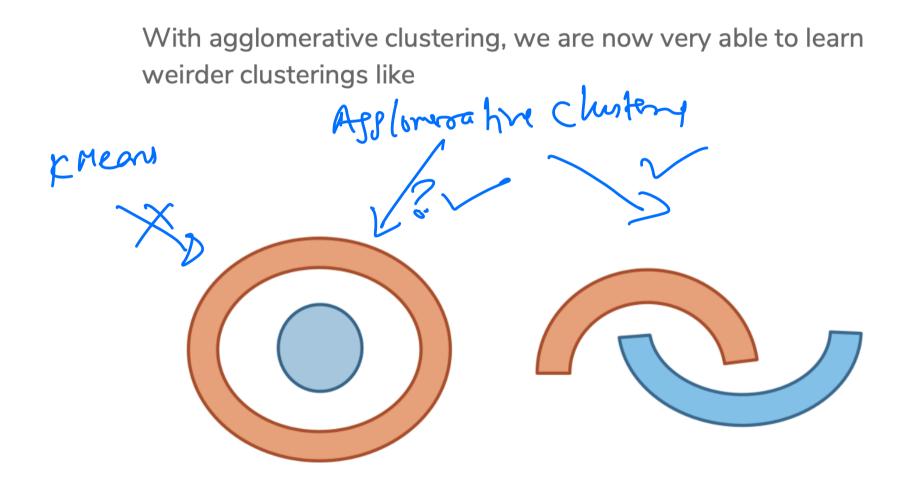
• Agglomerative Clustering

Lectures and Programming Assignments

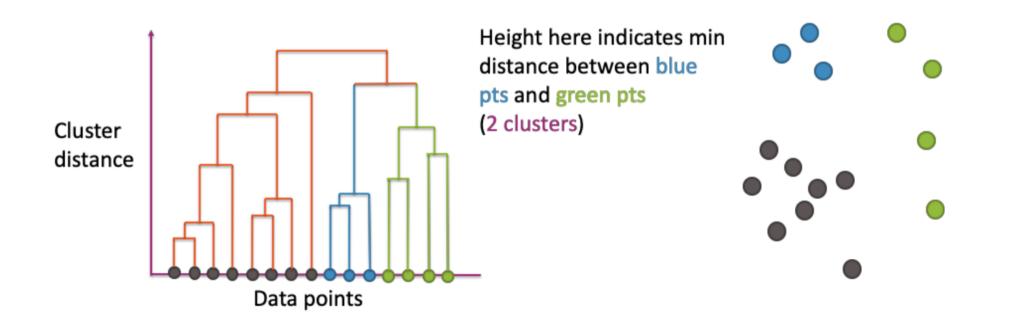
Week	Lecture Material	Assignment				
1	Linear Regression	Housing Price Prediction				
2	Classification	Spam classification (Kaggle)				
3	Classification Flower/Leaf classification					
4	Clustering	MNIST digits clustering				
5	Anomaly Detection	Crypto Prediction (Kaggle + P)				
6	Data Visualization	Crypto Prediction (Kaggle + P)				
	and Embeddings					
7	Deep Learning	Visualizing 1000 images				
8	Deep Learning (DL) ECG Arrythmia Detection					
9	DL in NLP	TwitterSentiment Analysis (Kaggle + P)				
10	DLs in Vision TwitterSentiment Analysis (Kaggle + P)					

- Agglomerative Clustering Wrap up
- SVD and Dimensionality Reduction
- Word2Vec and X2Vec

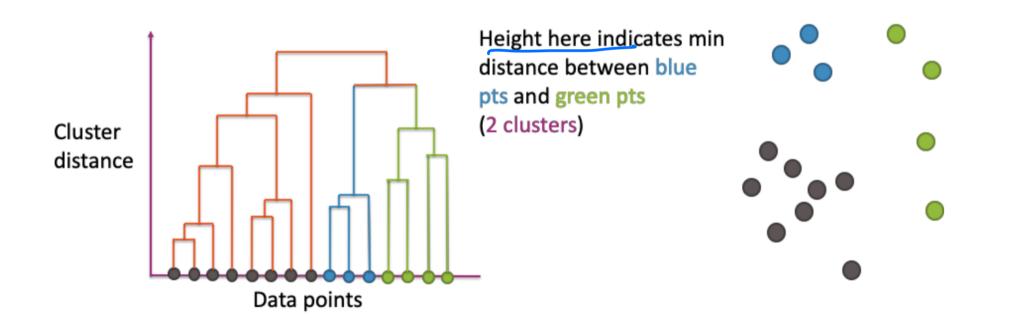
Agglomerative Clustering: Spiral and Donut!



x-axis shows the datapoints (arranged in a very particular order) y-axis shows distance between pairs of clusters



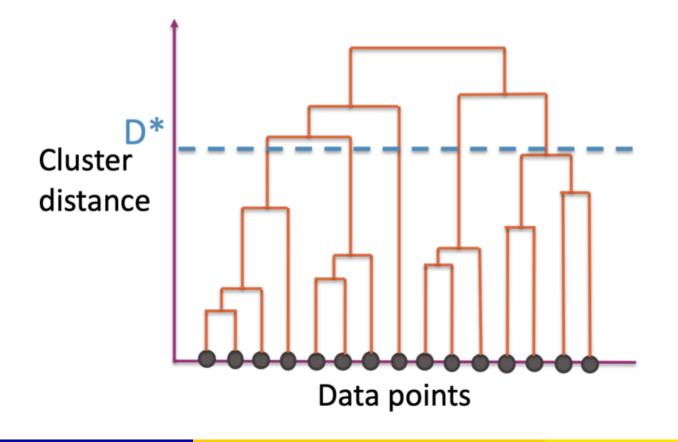
x-axis shows the datapoints (arranged in a very particular order) y-axis shows distance between pairs of clusters



Cut Dendrogram

Choose a distance D^* to "cut" the dendrogram

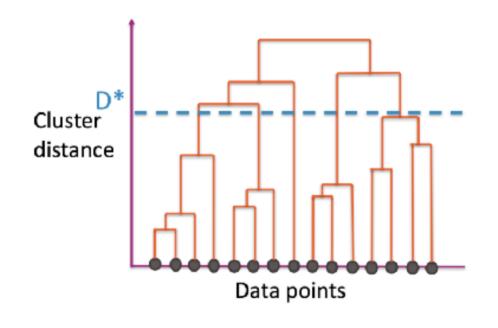
- Use the largest clusters with distance < D*</p>
- Usually ignore the idea of the nested clusters after cutting



Dendrogram ICE

ICE #2

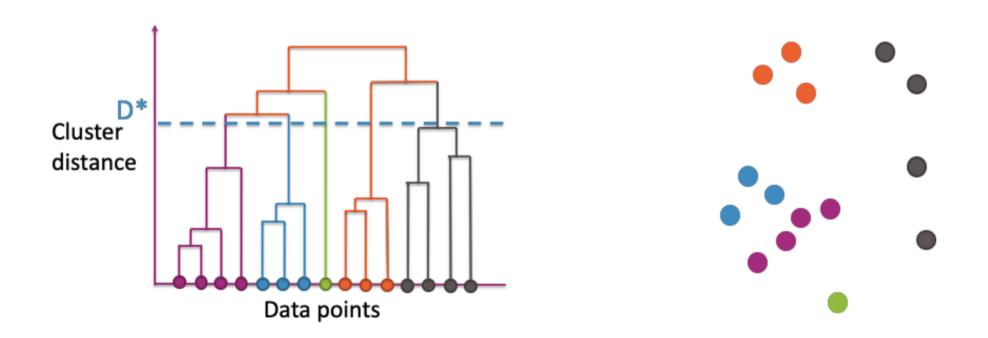
How many clusters would we have if we use this threshold to cut?



9 / 57

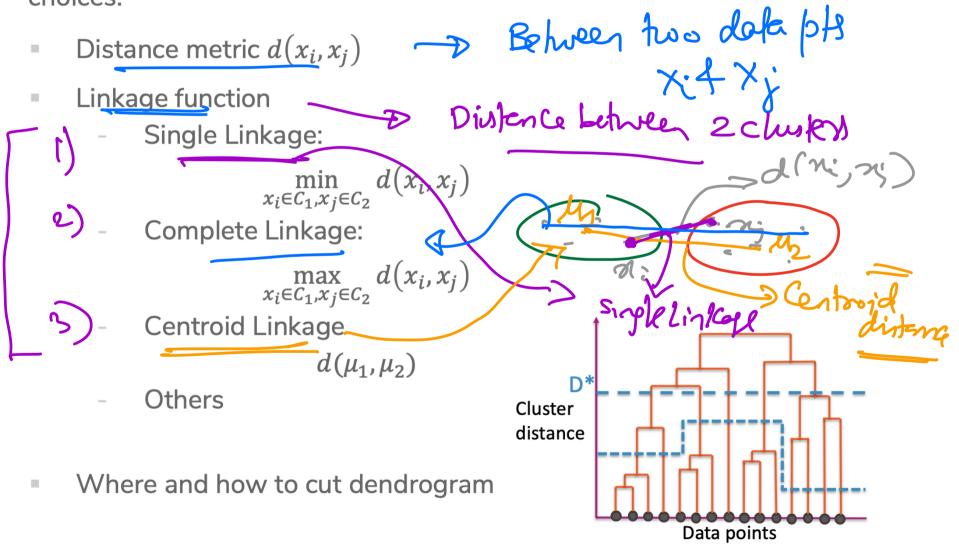
Cut Dendrogram

Every branch that crosses D^* becomes its own cluster



Agglomerative Clustering — Hyper-parameters

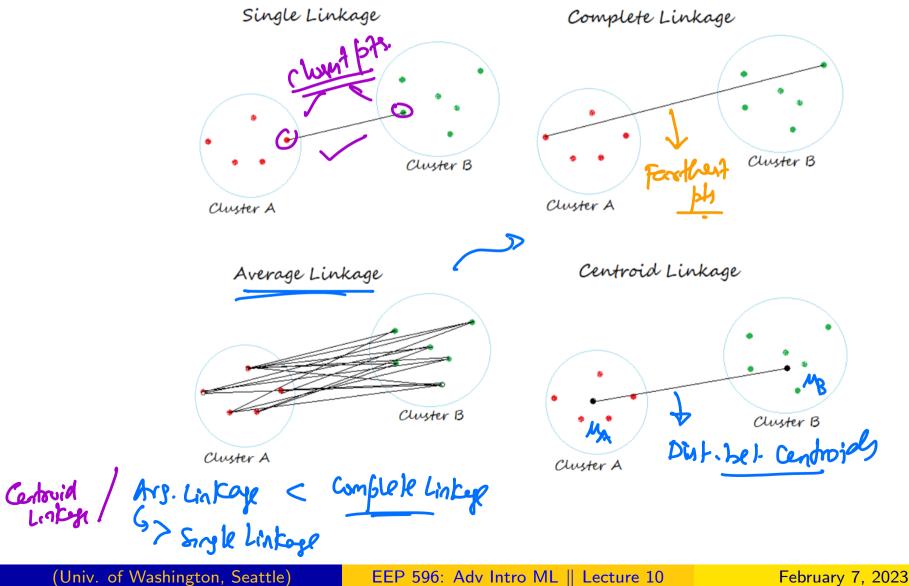
For agglomerative clustering, you need to make the following choices:



(Univ. of Washington, Seattle)

11 / 57

Linkage examples

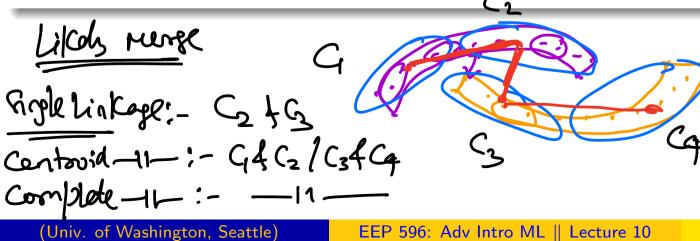


2023 12 / 57

ICE #1

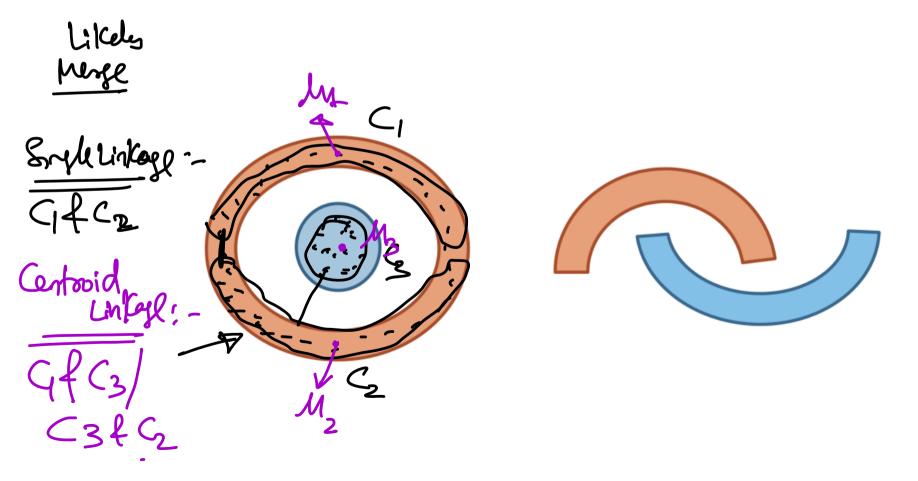
Which linkage function is more likely to detect spiral clusters?

- Single Linkage
- Centroid Linkage
- Complete Linkage
- Any Linkage



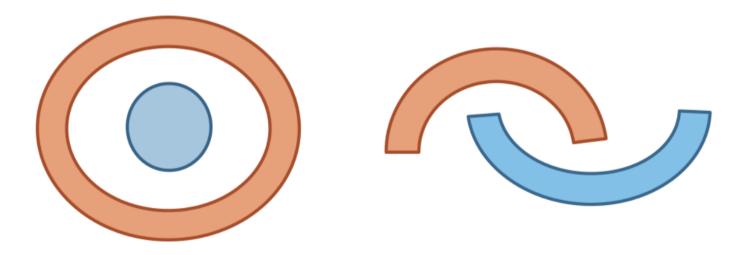
Centroid Linkage Applied to Spiral

With agglomerative clustering, we are now very able to learn weirder clusterings like

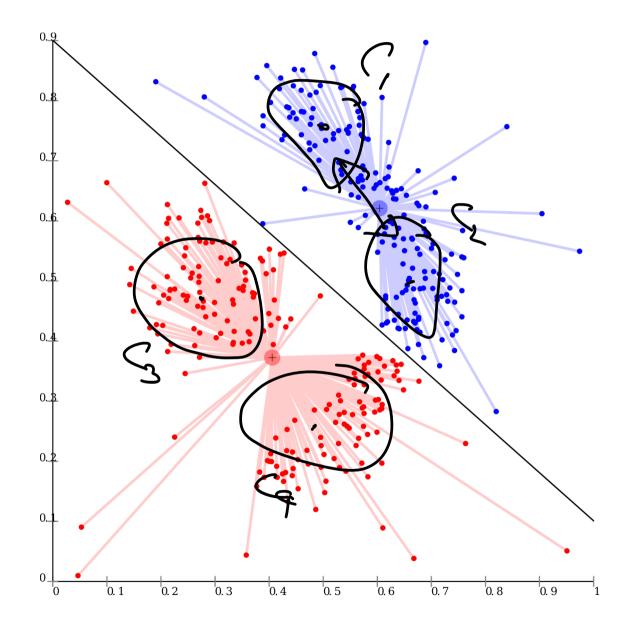


Single Linkage Applied to Spiral

With agglomerative clustering, we are now very able to learn weirder clusterings like



Where Centroid Linkage Works!



(Univ. of Washington, Seattle)

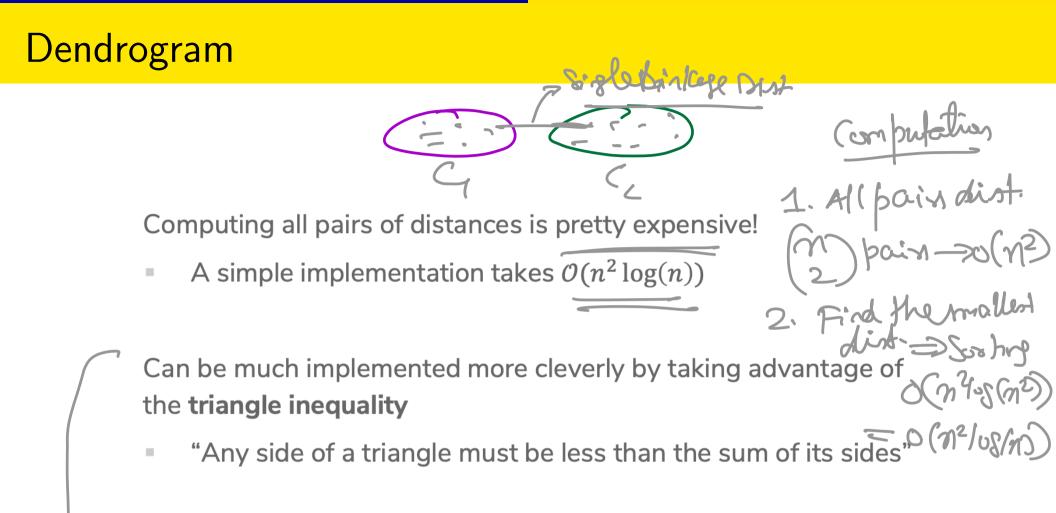
EEP 596: Adv Intro ML || Lecture 10

For visualization, generally a smaller # of clusters is better

For tasks like outlier detection, cut based on:

- Distance threshold
- Or some other metric that tries to measure how big the distance increased after a merge

No matter what metric or what threshold you use, no method is "incorrect". Some are just more useful than others.



Comparison of Clustering Algorithms

Quick comparison

	k-means	Agglomerative Clustering			
Computation	O(Ndk)	$O(N^2d)$			
Туре	Spherical	Arbitrary shapes			

Few more points..

- Weigh computational complexity with complexity of clustering kmeans vs agglomerative
- Agglomerative distance choices yield different sets of clusters (single linkage vs centroid)
- Clustering in practice is an art
- However, quality of clustering can be evaluated E.g. through Dunn Index!

Nas por Fasto

Dimensionality Reduction and Embeddings

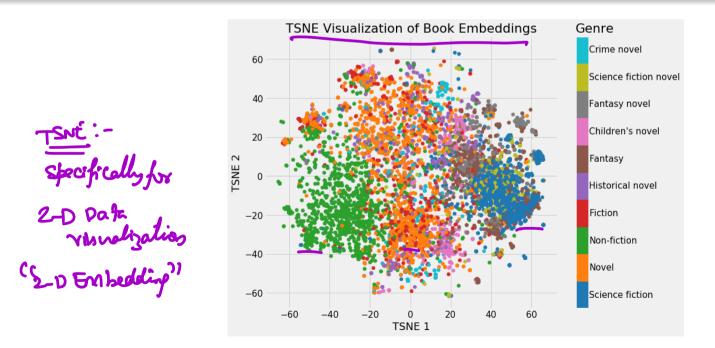
Basic Idea of Embeddings

Can you capture information in an image concisely, in a vector? Perhaps a 500x500 pixel image can be reduced to a 256 dimensional vector, z and z may have most of the information about the original image that can help you make predictions on the image - Say image classification or object detection or image captioning! Say you have 300k words in a vocabulary. Can you capture the semantics and information contained in each word concisely, maybe through a 512 dimensional vector? Perhaps this representation can help you solve a word riddle such as: *"What is King - Man + Woman?"* Concise representations of this kind are referred to as Embeddings.

Dimensionality Reduction and Embeddings

Today

Today we will learn about embeddings learned through <u>SVD</u> and one specifically for words as well. Embeddings also overlap with the idea of dimensionality reduction - Which can also serve the purpose of compressing data. What's an application of data compression that we use on a daily basis?



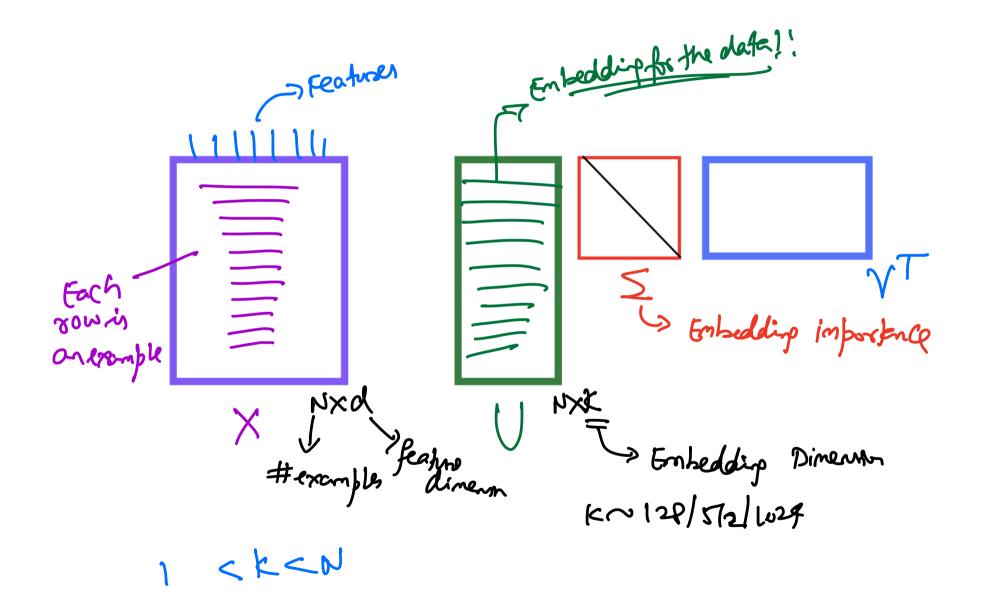
EEP 596: Adv Intro ML || Lecture 10

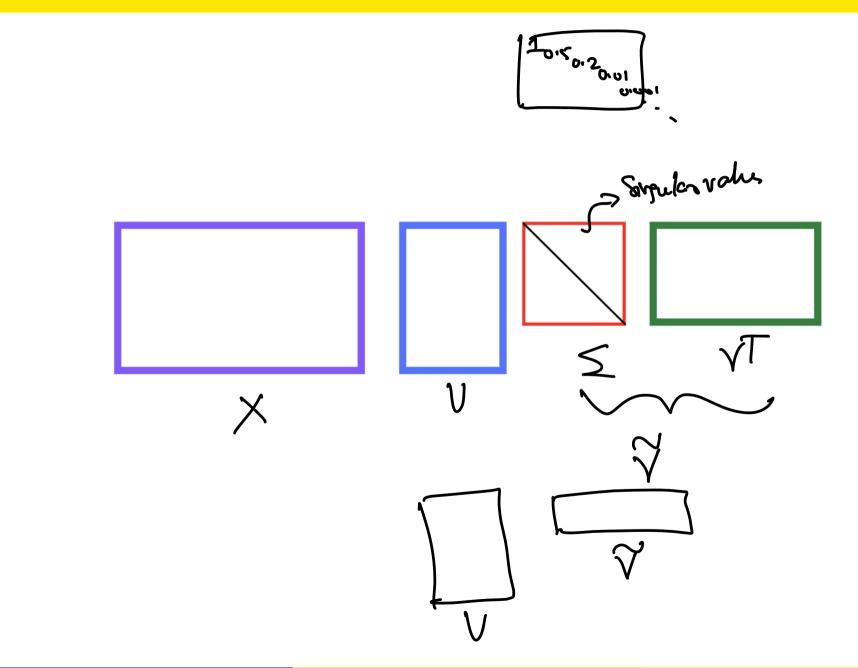
SVD

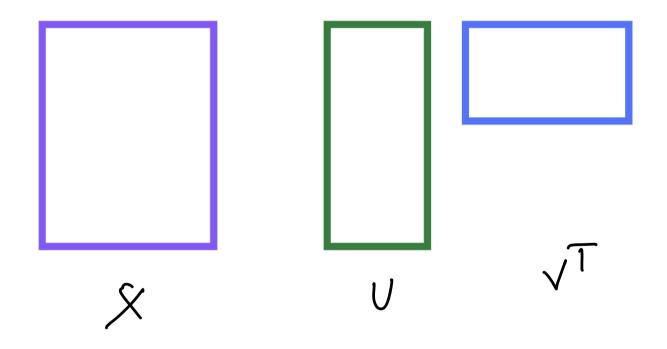
Every matrix $X \in \mathbb{R}^{m \times n}$ has a Singular Value Decomposition:

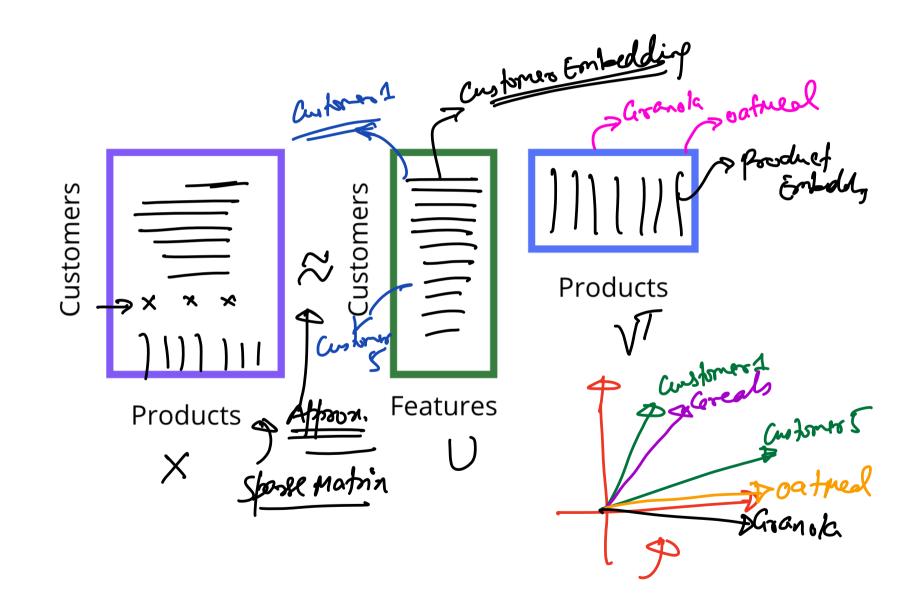
$$X = U \Sigma V^{T}$$

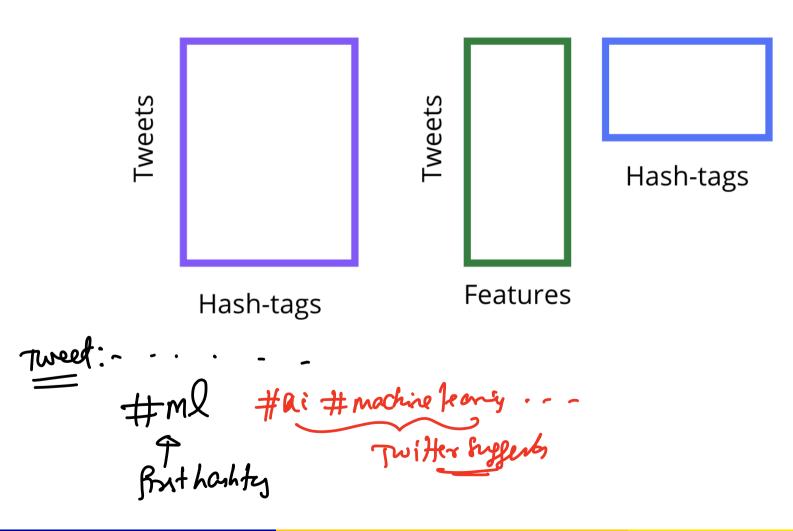
(Univ. of Washington, Seattle)

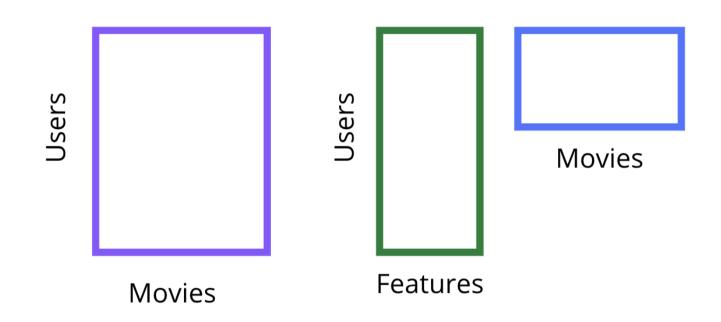




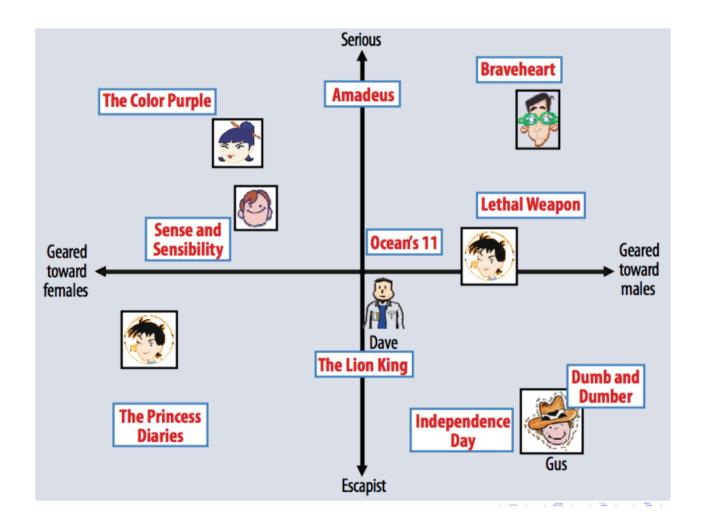


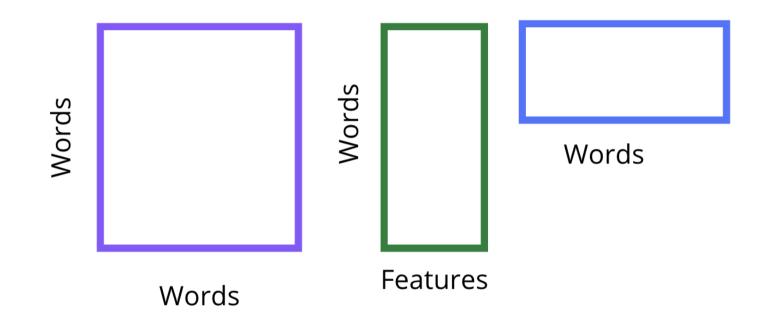






28 / 57





30 / 57

Word co-occurence

Example Sentence

I like NLP. I enjoy flying. I like deep learning.

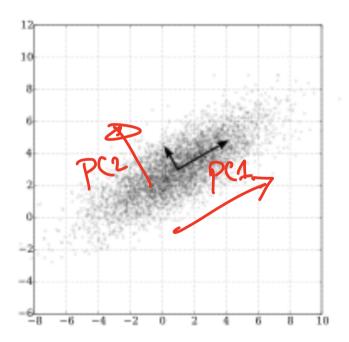
		Ι	like	enjoy	deep	learning	NLP	flying	
	Ι	Γ0	2	1	0	0	0	0	0]
X =	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0]

Co-occurrence May

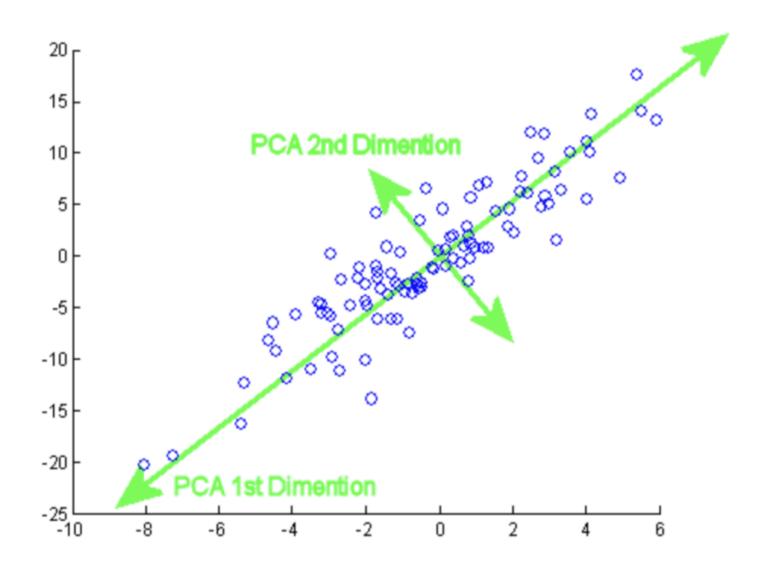
Other Popular Low-dimensioanl Embeddings

PCA

Principal components Analysis (based on SVD) tells us the direction of maximum variance in the data!

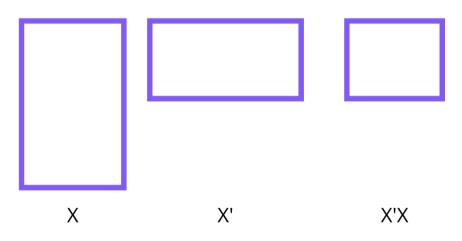


PCA



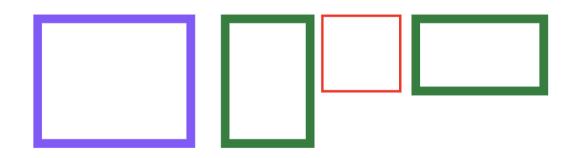
PCA model

Obtained through the eigen-decomposition of the sample covariance matrix



PCA model

SVD on the covariance matrix is the same as Eigen-decomposition of covariance matrix.

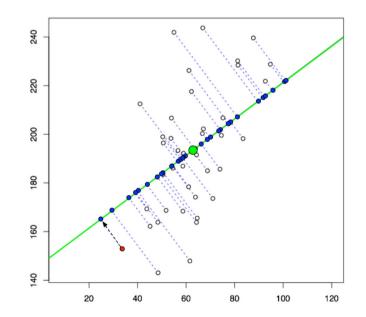


35 / 57

PCA Embeddings

PCA Embeddings

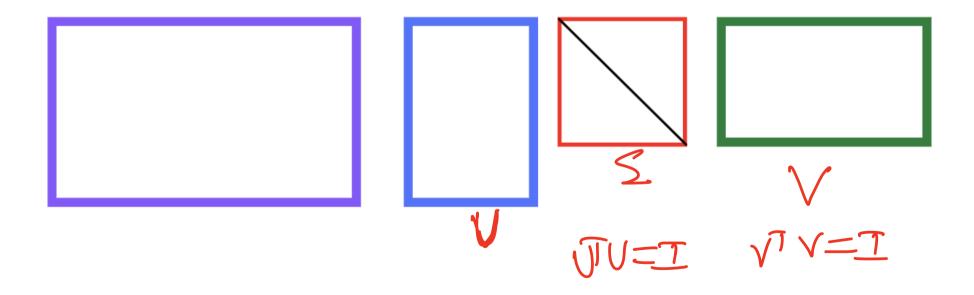
Projecting data onto the PCA directions also gives us low-dimensional embeddings.



EEP 596: Adv Intro ML || Lecture 10

Principal Components and Embeddings!

Principal Components $X = \bigvee \leq \bigvee T$ $X = \bigvee \leq \bigcup T$ $= \bigvee \leq \bigvee T$ If $X^T X = V \sum^2 V^T$ is the co-variance matrix, then V represents the principal components and $V^T X^T$ represents the embeddings or compressed representation of the data points!



XNXd ~ UNXK Exec KXd

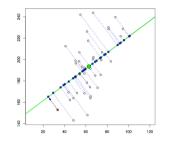
SVD manipulations

Let $X = U\Sigma V^T$. The projection of the data onto the principal components is given by $V^T X^T$. If X is $N \times d$, what's the dimension of the projection matrix with 3 principal components?

a $3 \times d$ b $3 \times N$ b $3 \times N$ c $N \times 3$ d $\times N$

38 / 57

ICE #4



Projection Dimension

Consider the figure above. Let $V_1 \in \mathcal{R}^d$ be the first principal component and the project of a data point $x \in \mathcal{R}^d$ onto V_1 is given by $V_1^T x$. Now let $V \in \mathcal{R}^{d \times k}$ be the entire set of principal components. When $x \in \mathcal{R}^d$ gets projected onto all the principal components, what's the dimension of the projected vector?

1 d

2 k

3 N

ICE #5

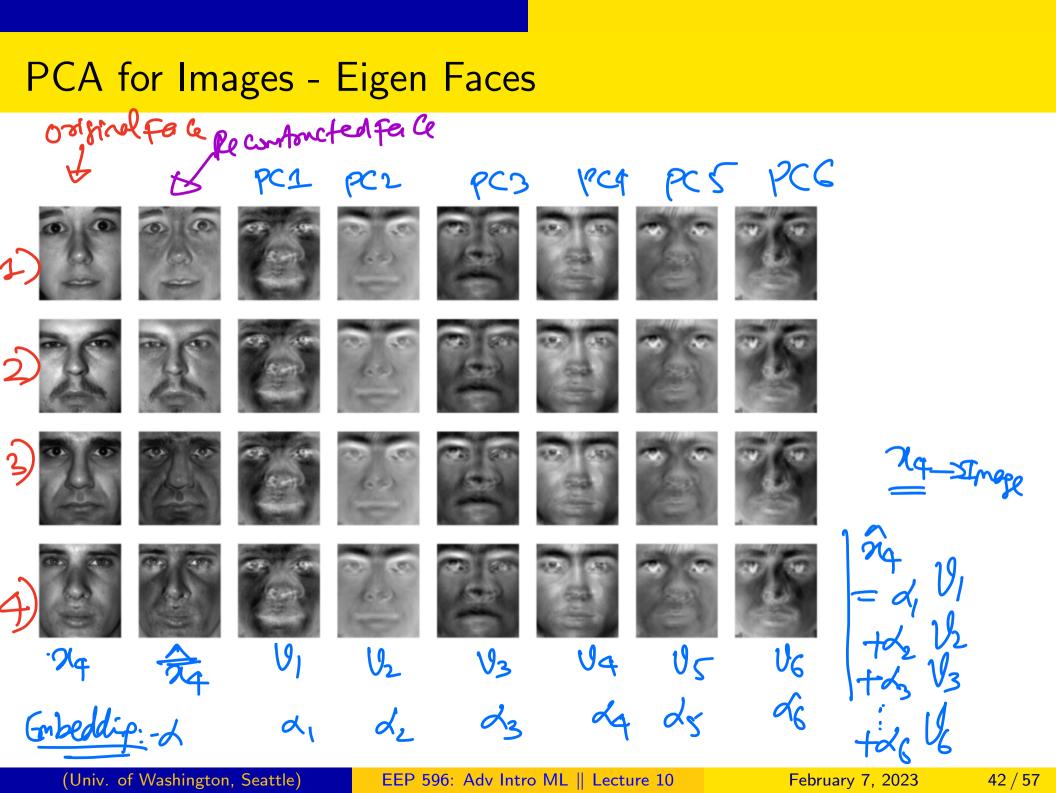
Images PCA (Work in groups of 2)

If you have 1000 face images and did a PCA on these images and found that 10 Eigen faces would be sufficient to reconstruct the images accurately. You stored compressed representations of the images on your laptop and to reconstruct the image, you send it to a server that then gives you back a re-constructed image. What would be the compression factor for the compressed representation you have on your laptop and obtained from PCA? Assume that each image is 1000×1000 pixels?

- 1000x
- **b** 10000×
- I00000×
- IMMx

PCA for Images

Egen-face



PCA for Images - Re-construction

SVD / PCA - One main Issue

- 1 Not scalable!
- Imagine millions of movies and millions of people watching it How do you compute the SVD for it?
- **3** Complexity is $O(N^2 k)$ where k is the latent dimension of the matrix.
- Ot very flexible

- <u> チェーしの</u>20
- Also not robust to outliers
- Uses a bi-linear model instead of a non-linear model

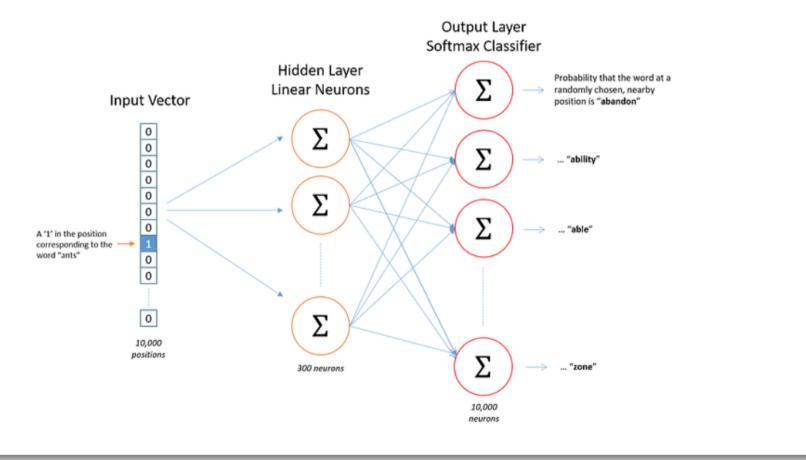
Skip Gram Model

Is based on the skip-gram model! How is training done? It's semi-supervised!!

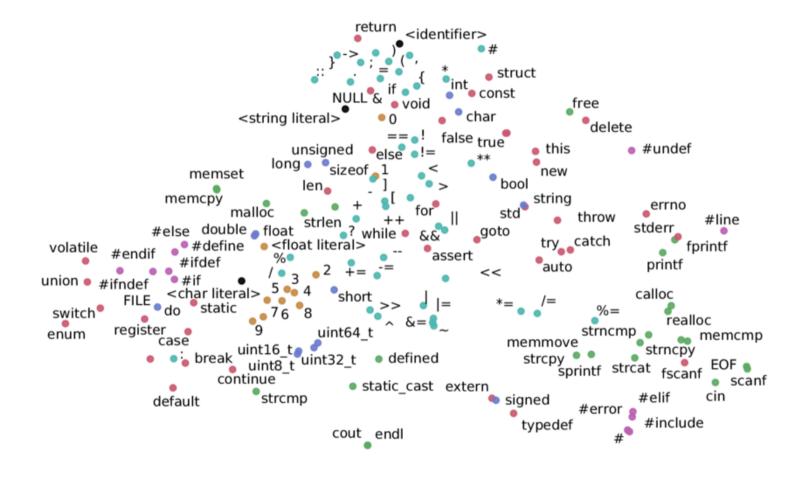
Source Text	Training Samples
The quick brown fox jumps over the lazy dog. \Longrightarrow	(the, quick) (the, brown)
The quick brown fox jumps over the lazy dog. \implies	(quick, the) (quick, brown) (quick, fox)
The quick brown fox jumps over the lazy dog. \implies	(brown, the) (brown, quick) (brown, fox) (brown, jumps)
The quick brown fox jumps over the lazy dog. \implies	(fox, quick) (fox, brown) (fox, jumps) (fox, over)

Word2Vec

Architecture



Word2Vec representation

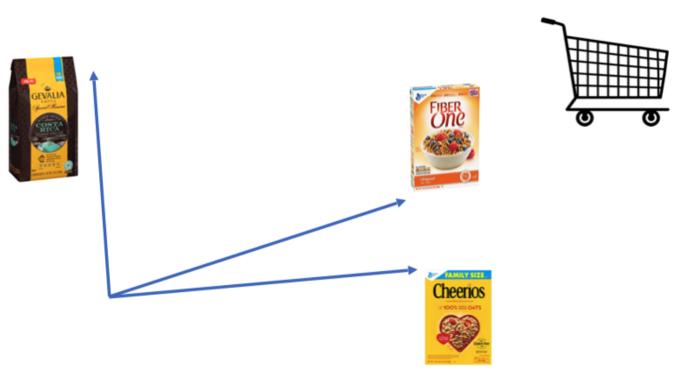


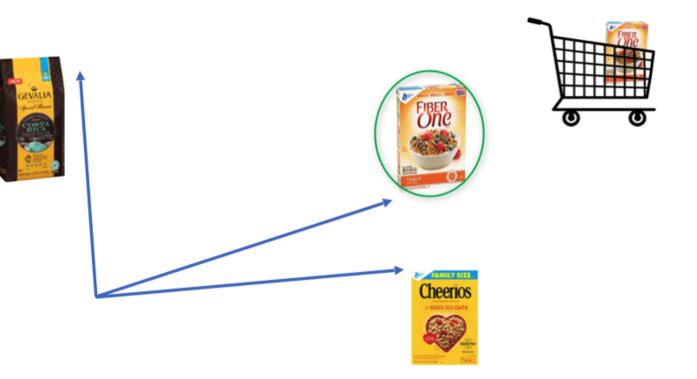
Product2Vec

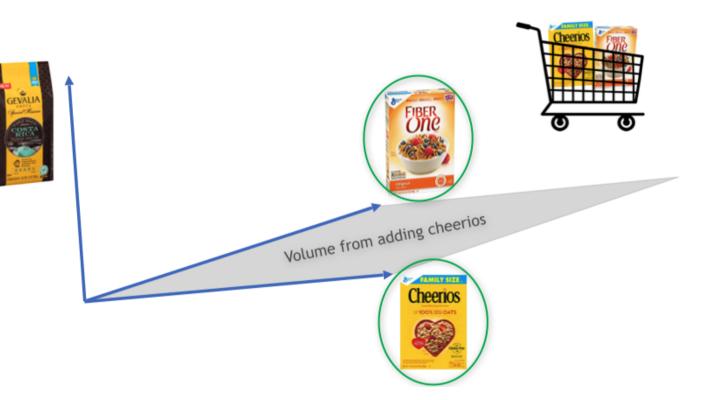
Represent products in product space with a large matrix of embedding coordinate vectors "*L*"

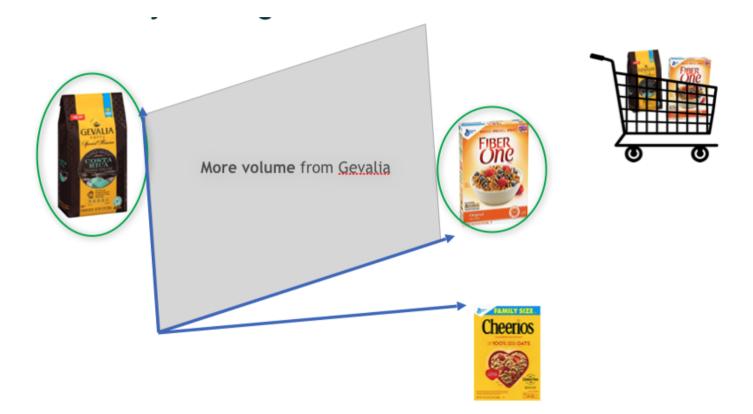
		Cherna All				0
L =	$\begin{pmatrix} 1.5 \\ 0.6 \\ 0.6 \\ 0.6 \end{pmatrix}$	$1.9 \\ 0.1 \\ 1.6 \\ 1.0$	$1.8 \\ 1.0 \\ 1.6 \\ 0.1$	$1.4 \\ 1.6 \\ 1.6 \\ 1.6$	 	$\begin{pmatrix} 0.4 \\ 1.9 \\ 1.8 \\ 0.6 \\ 0.7 \end{pmatrix}$
	(0.8)	1.4	1.9	0.8	• • •	0.7/

We obtain these embedding vectors from the <u>Product2Vec</u> service [London et al, 2017]









Breakout: Discuss your favorite X2Vec!

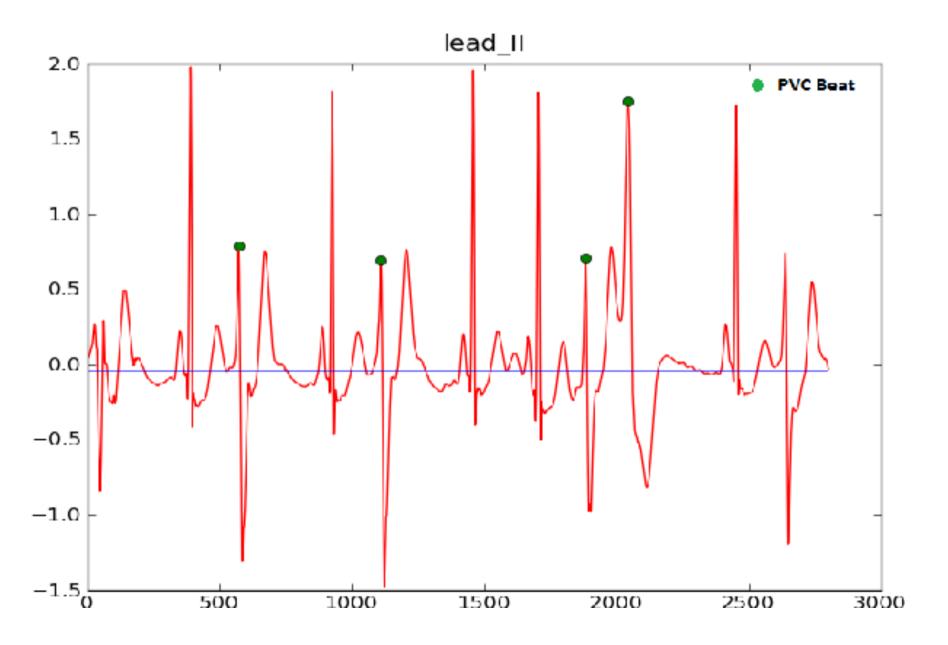
X2Vec

In your group - Discuss an application that requires machine learning. Be specific about it - Example, data, features, the type of problem (classificaiton, clustering, etc). Can you see how X2Vec would benefit your application. What would be your X in this case? How would you learn X2vec for your application? And how would you use it?

Comparison of Dimensionality Reduction Methods

Method	Utility	Pros	Cons
SVD	Low-dim embeddings	Easily	Scalability
		available	Accuracy
PCA	Same as SVD	EigenFaces	Outlier issues
Word2Vec	Semantic understanding	Non-linear	
Sentence2Vec	Comparing sentences		
Tweet2Vec	Understanding Tweets		
Product2Vec	Recommending products		
X2Vec			

Anomaly Detection: Arrythmia



Broad list of methods

Categorization

- Offline anomaly detection
- Real-time anomaly detection

56 / 57

Broad list of methods

Categorization

- Offline anomaly detection
- Real-time anomaly detection

Categorization

- Time-series data anomaly detection
- Regular anomaly detection

- SVD Bi-linear model
- PCA application of SVD to understand variation in data
- Opplication of PCA to images Eigen faces
- PCA can be used to compress images
- Non-linear models more accurate and flexible
- Word2vec uses a skip-gram non-linear model
- Word2vec an example of context based learning (semi-supervised learning)
- Can construct X2Vec for any X provided you have sufficient data
- Introduction to Anomaly detection