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Logistics

@ Please pick a team-mate for your project

@ Checkpoint submission for mini-project - Early submission to stay on
track!

© Anything else?
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N
Last Time

@ Anomaly Detection Baselines: SMA and EMA
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Last Time

@ Anomaly Detection Baselines: SMA and EMA
O Anomaly Detection: STL

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 13 February 16, 2023 3/62



N
Last Time

@ Anomaly Detection Baselines: SMA and EMA
O Anomaly Detection: STL
@ Anomaly Detection on Alpaca
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Today

@ Anomaly Detection Recap

@ Time-series methods for Anomaly Detection
@ Introduction to Deep Learning

@ Deep Learning Applications

@ Deep Learning Theory

@ Deep Learning Modeling
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N
Got Bot?

Bot Detection and Management Process
Bot Operator
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Arrhythmia Detection
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Types of Anomalies

@ Point Anomaly: Deviation from a set of data points.
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Types of Anomalies

@ Point Anomaly: Deviation from a set of data points.

@ Contextual Anomaly: Depending on the context, a data point
could be an anomaly or not. For instance 35 degrees is not an
anomalous temperature for Seattle winter but it is for Seattle
summer. Same is true for anomalies in a time-series data e.g. Sales
Revenue data.

Time Series Data
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Types of Anomalies

© Collective Anomalies:
collection of them become anomalous. E.g. the Arrhythmia time

series.

(Univ. of Washington, Seattle)
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Arrythmia detection

lead Il

nq}p ‘v{ /KJ M\ . \w"'/

[

4)\
U

[

A

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 13

February 16, 2023

10/62



Arrythmia detection

lead Il

Next Assignment: Automated Arrhythmia Detection

You want to build an automated algorithm for Arrhythmia detection from
time-series data on heart beats. What would be a baseline un-supervised
learning algorithm you can think of Arrhythmia detection? If you wanted
to do supervised learning for arrhythmia detection, what features would
you use? How would you cast it as a machine learning problem? How
would you evaluate the performance of your automated algorithm? What
would be the metrics you would use? Discuss in groups - We will
implement this as part of the next programming assignment.
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Deep Learning for Anomaly Detection

Deep Learning

Deep Learning can provide powerful non-linear supervised models for
anomaly detection provided there is enough data (both positive and
negative examples) and we account for over-fitting. On the upcoming
assignment, can also try out deep learning!
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|
Detecting bots/in-appropriate posts

Biasing the metrics

Do you bias more towards high precision or high recall? Is there a middle
ground? Can we have higher recall (i.e. detect the bots/in-appopriate
posts) without pissing people off with incorrect flags?
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Suicide detection from Social Media posts

Suicide Risk
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https://www.nature.com/articles/s41598-020-73917-0

Anomaly Detection Methods so far

Method

Pros

Cons

1 | Mean/Std Deviation

Identifies some anomalies

False positives

Supervised Learning

Precise detection

As good as features

(Univ. of Washington, Seattle)
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Anomaly Detection Methods - Coming up

Method

Pros

Mean/Std Deviation

Identifies some anomalies

Supervised Learning

Precise detection

Simple Moving Average (SMA)

Improves on mean/std deviat

Exponential Moving Average (EMA)

More sensitive then SMA

Gl P WIN =

STL

Accounts for seasonality
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Moving Averages - Simple Moving Average
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Simple Moving Average and Anomalies

SMA
© There is a window size that helps you track the moving average.
@ 50-SMA is a 50 day moving average
@ 50-SMA(i) = 3771 oo x;
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Simple Moving Average and Anomalies

SMA
© There is a window size that helps you track the moving average.
@ 50-SMA is a 50 day moving average
@ 50-SMA(i) = 3771 oo x;

Anomaly detection

@ x; is an anomaly if ||[SMA(i) — x;|| deviates above a t x SD(i) where
SD(i) is the standard deviation and N is the size of the window, t is
the threshold.
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|
SMA example

Data with Anomalies starred

«  Sunspots
Moving Average
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Github Library to try!
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https://github.com/HamishWoodrow/anomaly_detection

ICE #1

Moving mean computation
Let's say you wanted to implement SMA yourself. Let the window size be
100. You have SMA(i —1). How do you compute it from SMA(i — 1)?

Q@ SMA(i) = SMA(i — 1) + (5 — x;1)/N
© SMA(i) = SMA(i — 1) + x;/N

@ SMA(i) = SMA(i — 1)

@ SMA(i) = SMA(i — 1) — xi_1/N

(Univ. of Washington, Seattle)
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ICE 42

Moving mean computation

Based on the previous question, what's the computational complexity and
memory/storage complexity of SMA at point i, i.e. SMA(i)?

O(N), O(N)
O(1), O(N)
O(N), 0(1)
O(1), 0(1)

© 000

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 13 February 16, 2023 20/62



Moving Variance computation for SMA

Moving Variance

Same principle as computing the moving mean for SMA.
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Exponential Moving Average and Anomalies

EMA
@ Similar to SMA - Except the moving window is soft

@ Weight more of the recent terms than before and weight it
exponentially.

Q@ EMA(I)=(1—-B)*« EMA(i — 1)+ B * x; where 0 < 5 <1
Q@ EMA(i) = Bx;i + B(1 — B)xi—1 + B(1 — B)2xj—2 + . ...
© EMA has a hyper-parameter 3 instead of window size N as in SMA.
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Exponential Moving Average and Anomalies

EMA
@ Similar to SMA - Except the moving window is soft

@ Weight more of the recent terms than before and weight it
exponentially.

Q@ EMA(I)=(1—-B)*« EMA(i — 1)+ B * x; where 0 < 5 <1
Q@ EMA(I) = Bx;i + B(1 — B)xi—1 + B(1 — B)’xi_2 + ...
© EMA has a hyper-parameter 3 instead of window size N as in SMA.

Anomaly detection

Q x; is an anomaly if ||[EMA(i) — x;|| deviates above a t x SD(i) where
SD(i) is the standard deviation of the deviation.
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Exponential Moving Average
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SMA vs EMA

EMA is more sensitive to price
movement turning up before the SMA §2.00
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Accounting for Seasonality
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Accounting for Seasonality
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-
STL: Accounting for Seasonality
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STL: Accounting for Seasonality

600+
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-
STL Library

Prophet Anomaly Detection
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https://facebook.github.io/prophet/

For the upcoming assignment on Arrhythmia Detection

Q@ Try SMA/EMA (unsupervised baseline)
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For the upcoming assignment on Arrhythmia Detection

Q@ Try SMA/EMA (unsupervised baseline)
@ Try a supervised linear-model baseline like Logistic Regression
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For the upcoming assignment on Arrhythmia Detection

Q@ Try SMA/EMA (unsupervised baseline)
@ Try a supervised linear-model baseline like Logistic Regression
© Try a supervised non-linear model like Random Forest
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For the upcoming assignment on Arrhythmia Detection

Q@ Try SMA/EMA (unsupervised baseline)

@ Try a supervised linear-model baseline like Logistic Regression
© Try a supervised non-linear model like Random Forest

@ Try a deep learning model
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For the upcoming assignment on Arrhythmia Detection

Try SMA/EMA (unsupervised baseline)

Try a supervised linear-model baseline like Logistic Regression
Try a supervised non-linear model like Random Forest

Try a deep learning model

00000

Benchmark offline results in a tabular format with algorithms and
metrics.
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For the upcoming assignment on Arrhythmia Detection

Q@ Try SMA/EMA (unsupervised baseline)

@ Try a supervised linear-model baseline like Logistic Regression

© Try a supervised non-linear model like Random Forest

@ Try a deep learning model

© Benchmark offline results in a tabular format with algorithms and
metrics.

O Kaggle competition benchmarks performance on held-out and unseen

test set
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For the upcoming assignment on Arrhythmia Detection

Q@ Try SMA/EMA (unsupervised baseline)

@ Try a supervised linear-model baseline like Logistic Regression

© Try a supervised non-linear model like Random Forest

@ Try a deep learning model

© Benchmark offline results in a tabular format with algorithms and
metrics.

O Kaggle competition benchmarks performance on held-out and unseen
test set

@ Share your insights in the process - Pros/cons of different approaches

and what changes give you a boost in performance and why?
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|
Next Topic: Deep Learning
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Introduction to Deep Learning

Deep Learning
© Lot of buzz around Deep Learning in the past decade!
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Introduction to Deep Learning

Deep Learning
© Lot of buzz around Deep Learning in the past decade!

@ Deep Learning refers to Neural Networks that is a loose
approximation of how the brain works
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|
Applications of Deep Learning

Applications
@ Self-driving cars
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Applications of Deep Learning

Applications
@ Self-driving cars

@ Sentiment analysis
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Applications of Deep Learning

Applications
@ Self-driving cars
@ Sentiment analysis

© Text Summarization

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 13 February 16, 2023 33/62



|
Applications of Deep Learning

Applications
@ Self-driving cars
@ Sentiment analysis
© Text Summarization

@ Arrythmia detection - Possible assignment for this course!
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|
Applications of Deep Learning

Applications
@ Self-driving cars
@ Sentiment analysis
© Text Summarization
@ Arrythmia detection - Possible assignment for this course!

© Image to text generation. Caption images automatically.
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|
Applications of Deep Learning

Applications

Self-driving cars

Sentiment analysis

Text Summarization

Arrythmia detection - Possible assignment for this course!

Image to text generation. Caption images automatically.

©0 0000

Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture
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|
Applications of Deep Learning

Applications
@ Self-driving cars
@ Sentiment analysis
© Text Summarization
@ Arrythmia detection - Possible assignment for this course!
© Image to text generation. Caption images automatically.
© Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture
@ Auto-complete sentence in Emails. How many of us use this?
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|
Applications of Deep Learning

Applications
@ Self-driving cars
@ Sentiment analysis
© Text Summarization
@ Arrythmia detection - Possible assignment for this course!
© Image to text generation. Caption images automatically.
© Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture
@ Auto-complete sentence in Emails. How many of us use this?
© Auto-complete search results.
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|
Applications of Deep Learning

Applications

Self-driving cars

Sentiment analysis

Text Summarization

Arrythmia detection - Possible assignment for this course!

Image to text generation. Caption images automatically.

©0 0000

Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

Auto-complete sentence in Emails. How many of us use this?
Auto-complete search results.
Chat bots - Like ChatGPT /Sparrow/Anthropic, etc

© 00
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Email auto-complete
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Image to Text!

/75 AN
0 ik

F,

woman, crowd, cat,
camera, holding, purple |

A purple camera with a woman. \
A woman holding a camera in a crowd.

A woman holding a cat. 3 /

#1 A woman holding a
camera in a crowd. )
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Perceptron

Score(x) = Wo+ Wy X[1] + W, X[2] + ... + wy x[d]

Score(x) >0

+ 4+
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Perceptron
Input Output
d
Z wix[j] = wo + wix[1] + ... + wax[d]
=1
d
g(Score(x)) _JL if Z w;x[j]1> 0
j=1
0, otherwise
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N
OR and AND Functions

What can a perceptrons represent?

| xORx, | x,ANDX,

>0 30

X1 X2 Yy X1 X2 Yy
0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1
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-
Learning XOR
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-
XOR through Multi-layer perceptron

This is a 2-layer neural network
y = x[1] XOR x[2] = (x[1] AND ! x[2]) OR (! x[1] AND x[2])

v[1] = (x[1] AND ! x[2])
= g(—=0.5+ x[1] — x[2])

v[2] = (1x[1] AND x[2])
= g(—0.5— x[1] + x[2])

v[1] OR v[2]
g(—=0.5 +v[1] + v[2])

y
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ICE #3

Which methods can learn the XOR function?
© Logistics Regression
@ Naive Bayes Classifier
© Decision Trees

@ Support Vector Machines
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|
Multi-Layer Perceptron (MLP)
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|
Multi-Layer Perceptron (MLP)
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-
2 Layer Neural Network

Two layer neural network (alt. one hidden-layer neural network)

Inputs Outputs

Single

out(x) =g <w0 + Z%‘ﬂj])
J

1-hidden layer

out(x) =g (wo + Z Wi g (wék) + Z W/.(k)xb']>>
k J
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Perceptron to Logistic Regression

1
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Choices for Non-Linear Activation Function

+Sigmoid

-Historically popular, but (mostly) fallen out of favor
*Neuron’s activation saturates

(weights get very large -> gradients get small)

*Not zero-centered -> other issues in the gradient steps
-When put on the output layer, called “softmax” because
interpreted as class probability (soft assignment)

*Hyperbolic tangent g(x) = tanh(x)
-Saturates like sigmoid unit, but zero-centered

*Rectified linear unit (ReLU) g(x) = x+ = max(0,x)
-Most popular choice these days

-Fragile during training and neurons can “die off”...
be careful about learning rates

-"Noisy” or “leaky” variants

*Softplus g(x) = log(1+exp(x))
-Smooth approximation to rectifier activation

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 13

-1

sigmoid

0 1

Hyperbolic
tangent

February 16, 2023

46 /62



|
RELU vs Leaky RELU

Leaky ReLU: y=0.01x /
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Computer vision before deep learning

Input Extract features Use simple classifier

e.g., logistic regression, SVMs

s

Hand-created
features
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Computer vision after deep learning

. Prediction

Example
detectors
learned

Example
interest points
detected

[Zeiler & Fergus ‘13]
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Feed-forward Deep Learning Architecture Example

1980S-ERA NEURAL NETWORK

Hidden
layer

Input

O
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Links carry signals
from one node
to another, boosting
or damping them
according to each
link's ‘weight'.

DEEP LEARNING NEURAL NETWORK

Muttiple hidden layers
process hierarchical features

Input
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Identify combinations
light/dark or features
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Feed-forward Deep Learning Architecture Example

Hidden Hidden Hidden Oueput
layer L layer Ly layer Ly layer Ly
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Good vs Bad Local minima
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Hyper-parameters in Deep Learning

ICE #4: Which of the following is not a hyper-parameter in deep learning?
@ Learning rate
@ Number of Hidden Layers
© Number of neurons per hidden layer
@ None of the above
O All of the above
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
@ Number of Hidden Layers

© Number of neurons per hidden layer
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
@ Number of Hidden Layers
© Number of neurons per hidden layer

@ Type of non-linear activation function used
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
@ Number of Hidden Layers
© Number of neurons per hidden layer
@ Type of non-linear activation function used
© Anything else?
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Hyper-parameter tuning methods

Grid search: © 0°Q 0
O O=URO \ Hyperparameters
o o 0 o 7 on 2d uniform grid
o oo o
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Hyper-parameter tuning methods

Grid search: O T FO
O O=ORO \ Hyperparameters
e o 0 o 7 on 2d uniform grid
o oo o
Random search: ° .,.'
° o ®

° ™. Hyperparameters
e°® o o randomly chosen
() 7
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Hyper-parameter tuning methods

Grid search: O }°
oge o .\ Hyperparameters
o o o 07 on 2d uniform grid
o oWe o
Random search: o .’.'
® o0 ° o~ Hyperparameters
% o o randomly chosen
N
: B s )
Bayesian Optimization: ° o0

e, ®o @~ Hyperparameters

’ 0
o © o <~ adaptively chosen
© ‘/
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|
ICE #5

Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has
1000 neurons. Let the input layer be raw pixels from a 100x100 image and
the output layer has 10 dimensions, let’s say for a 10 class image
classification example. How many total parameters exist in the DNN
model?

© 10 million parameters
@ 11 million parameters

© 12 million parameters

© 13 million parameters
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Over-fitting in DNNs

How to handle over-fitting in DNNs

@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.
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over-fitting.

@ Weight regularization can help - £1, /45
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Over-fitting in DNNs

How to handle over-fitting in DNNs

@ A DNN model with 100 million parameters and only 100k data points

or even a million data points will overfit unless we take care of
over-fitting.

@ Weight regularization can help - £1, /45
© More common over-fitting strategy for DL?
© Dropouts!
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Over-fitting in DNNs

How to handle over-fitting in DNNs

@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

@ Weight regularization can help - £1, /45

© More common over-fitting strategy for DL?

© Dropouts!

© Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??
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Over-fitting in DNNs

How to handle over-fitting in DNNs

@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - ¢1, /5
More common over-fitting strategy for DL?

Dropouts!

© 000

Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??

©

Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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Taking care of Over-fitting: Dropouts

(a) Standard Neural Net (b) After applying dropout
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Forward Propagation vs Back-propagation

Hidden layer(s)

Output layer

*

\

.

\/

Ya
tay,
Backprop output layer
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Back Propagation explained

91019

1. receive new observation x = [x,...x,] and target y*
2. feed forward: for each unit g; in each layer 1...L
compute g; based on units f;, from previous layer: g, =o (M ot E Uy /A)
3. get prediction y and error (y-y") !
4. back-propagate error: for each unit g; in each layer L...1

(a) compute error on g; (b) for each u that affects g;
OF A IE (i) compute error on uy (ii) update the weight
= a'(h)v, — p
Jg E Bavy o JE JE ) IE
4 ! P 98 o' (8 fi b TS
should g, how h, will was h, too e j 2
be higher change as high or a h 1l ch
lower?  g;changes toolow? R SR el
oF; TY be higher/lower if uy,is higher/lower

52014 Victor Lavrenko
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