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Logistics

1 Please pick a team-mate for your project

2 Checkpoint submission for mini-project - Early submission to stay on
track!

3 Anything else?
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Last Time

a Anomaly Detection Baselines: SMA and EMA

b Anomaly Detection: STL
c Anomaly Detection on Alpaca
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Today

Anomaly Detection Recap

Time-series methods for Anomaly Detection

Introduction to Deep Learning

Deep Learning Applications

Deep Learning Theory

Deep Learning Modeling
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Fraud Detection
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Got Bot?
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Arrhythmia Detection

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 13 February 16, 2023 7 / 62



Types of Anomalies

1 Point Anomaly: Deviation from a set of data points.

2 Contextual Anomaly: Depending on the context, a data point
could be an anomaly or not. For instance 35 degrees is not an
anomalous temperature for Seattle winter but it is for Seattle
summer. Same is true for anomalies in a time-series data e.g. Sales
Revenue data.
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Types of Anomalies

3 Collective Anomalies: No one data point is anomalous but a
collection of them become anomalous. E.g. the Arrhythmia time
series.
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Arrythmia detection

Next Assignment: Automated Arrhythmia Detection

You want to build an automated algorithm for Arrhythmia detection from
time-series data on heart beats. What would be a baseline un-supervised
learning algorithm you can think of Arrhythmia detection? If you wanted
to do supervised learning for arrhythmia detection, what features would
you use? How would you cast it as a machine learning problem? How
would you evaluate the performance of your automated algorithm? What
would be the metrics you would use? Discuss in groups - We will
implement this as part of the next programming assignment.
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Deep Learning for Anomaly Detection

Deep Learning

Deep Learning can provide powerful non-linear supervised models for
anomaly detection provided there is enough data (both positive and
negative examples) and we account for over-fitting. On the upcoming
assignment, can also try out deep learning!
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Detecting bots/in-appropriate posts

Biasing the metrics

Do you bias more towards high precision or high recall? Is there a middle
ground? Can we have higher recall (i.e. detect the bots/in-appopriate
posts) without pissing people o↵ with incorrect flags?
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Suicide detection from Social Media posts

Suicide Detection Reference
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https://www.nature.com/articles/s41598-020-73917-0


Anomaly Detection Methods so far

Method Pros Cons
1 Mean/Std Deviation Identifies some anomalies False positives
2 Supervised Learning Precise detection As good as features used
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Anomaly Detection Methods - Coming up

Method Pros Cons
1 Mean/Std Deviation Identifies some anomalies False positives
2 Supervised Learning Precise detection As good as features used
3 Simple Moving Average (SMA) Improves on mean/std deviation Less sensitive
4 Exponential Moving Average (EMA) More sensitive then SMA
5 STL Accounts for seasonality
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Moving Averages - Simple Moving Average
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Simple Moving Average and Anomalies

SMA
1 There is a window size that helps you track the moving average.

2 50-SMA is a 50 day moving average

3 50-SMA(i) = 1
50

Pi�1
j=i�50 xj

Anomaly detection

1 xi is an anomaly if kSMA(i)� xik deviates above a t ⇥ SD(i) where
SD(i) is the standard deviation and N is the size of the window, t is
the threshold.
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SMA example

Github Library to try!
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https://github.com/HamishWoodrow/anomaly_detection


ICE #1

Moving mean computation

Let’s say you wanted to implement SMA yourself. Let the window size be
100. You have SMA(i � 1). How do you compute it from SMA(i � 1)?

a SMA(i) = SMA(i � 1) + (xi � xi�1)/N

b SMA(i) = SMA(i � 1) + xi/N
c SMA(i) = SMA(i � 1)

d SMA(i) = SMA(i � 1)� xi�1/N
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ICE #2

Moving mean computation

Based on the previous question, what’s the computational complexity and
memory/storage complexity of SMA at point i , i.e. SMA(i)?

a O(N),O(N)

b O(1),O(N)
c O(N),O(1)

d O(1),O(1)
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Moving Variance computation for SMA

Moving Variance

Same principle as computing the moving mean for SMA.
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Exponential Moving Average and Anomalies

EMA
1 Similar to SMA - Except the moving window is soft
2 Weight more of the recent terms than before and weight it

exponentially.

3 EMA(i) = (1� �) ⇤ EMA(i � 1) + � ⇤ xi where 0  �  1

4 EMA(i) = �xi + �(1� �)xi�1 + �(1� �)2xi�2 + . . .

5 EMA has a hyper-parameter � instead of window size N as in SMA.

Anomaly detection

1 xi is an anomaly if kEMA(i)� xik deviates above a t ⇥ SD(i) where
SD(i) is the standard deviation of the deviation.
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Exponential Moving Average
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SMA vs EMA
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Accounting for Seasonality
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Accounting for Seasonality

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 13 February 16, 2023 26 / 62



STL: Accounting for Seasonality
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STL: Accounting for Seasonality
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STL Library

Prophet Anomaly Detection
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https://facebook.github.io/prophet/


For the upcoming assignment on Arrhythmia Detection

1 Try SMA/EMA (unsupervised baseline)

2 Try a supervised linear-model baseline like Logistic Regression
3 Try a supervised non-linear model like Random Forest
4 Try a deep learning model
5 Benchmark o✏ine results in a tabular format with algorithms and

metrics.
6 Kaggle competition benchmarks performance on held-out and unseen

test set
7 Share your insights in the process - Pros/cons of di↵erent approaches

and what changes give you a boost in performance and why?
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Next Topic: Deep Learning
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Introduction to Deep Learning

Deep Learning

1 Lot of buzz around Deep Learning in the past decade!

2 Deep Learning refers to Neural Networks that is a loose
approximation of how the brain works
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Applications of Deep Learning

Applications

1 Self-driving cars

2 Sentiment analysis

3 Text Summarization

4 Arrythmia detection - Possible assignment for this course!

5 Image to text generation. Caption images automatically.

6 Machine Translation. Translate a French sentence to English
sentence. Sequence to sequence architecture

7 Auto-complete sentence in Emails. How many of us use this?

8 Auto-complete search results.

9 Chat bots - Like ChatGPT/Sparrow/Anthropic, etc
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Email auto-complete
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Image to Text!
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Perceptron

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 13 February 16, 2023 36 / 62



Perceptron
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OR and AND Functions
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Learning XOR
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XOR through Multi-layer perceptron
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ICE #3

Which methods can learn the XOR function?
1 Logistics Regression

2 Naive Bayes Classifier

3 Decision Trees

4 Support Vector Machines
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Multi-Layer Perceptron (MLP)
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Multi-Layer Perceptron (MLP)
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2 Layer Neural Network
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Perceptron to Logistic Regression
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Choices for Non-Linear Activation Function
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RELU vs Leaky RELU
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Computer vision before deep learning
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Computer vision after deep learning
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Feed-forward Deep Learning Architecture Example
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Feed-forward Deep Learning Architecture Example
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Good vs Bad Local minima
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Hyper-parameters in Deep Learning

ICE #4: Which of the following is not a hyper-parameter in deep learning?

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 None of the above

5 All of the above
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Hyper-parameters in Deep Learning

Hyper-parameters

1 Learning rate

2 Number of Hidden Layers

3 Number of neurons per hidden layer

4 Type of non-linear activation function used

5 Anything else?
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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Hyper-parameter tuning methods
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ICE #5

Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has
1000 neurons. Let the input layer be raw pixels from a 100x100 image and
the output layer has 10 dimensions, let’s say for a 10 class image
classification example. How many total parameters exist in the DNN
model?

1 10 million parameters

2 11 million parameters

3 12 million parameters

4 13 million parameters
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Over-fitting in DNNs

How to handle over-fitting in DNNs

1 A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

2 Weight regularization can help - `1, `2
3 More common over-fitting strategy for DL?

4 Dropouts!

5 Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How’s this di↵erent from
regular validation we were doing earlier??

6 Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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when the validation error starts increasing. How’s this di↵erent from
regular validation we were doing earlier??

6 Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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Taking care of Over-fitting: Dropouts
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Forward Propagation vs Back-propagation
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Back Propagation explained
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