EEP 596: Adv Intro ML || Lecture 14 Dr. Karthik Mohan

Univ. of Washington, Seattle

February 21, 2023

- Please pick a team-mate for your project and find a cool team name by EOD
- Pream sign up sheet in the discord channel
- Ocheckpoint submission for mini-project on Sunday night Early submission to stay on track!
- G Kaggle Contest as well to try out your amazing Strategies and Algorithms!
- Anything else?

- Wrap up on Anomaly Detection
- Deep Learning Applications

- More Deep Learning facets
- Auto Encoders and types!
- Brain Storming Break-out Exercise
- Deep Learning in NLP
- Sequence to Sequence Models

Deep Learning

Great reference for the theory and fundamentals of deep learning: Book by Goodfellow and Bengio et al Bengio et al

Logitic Regression to Deep Learning: Recap

2 Layer Neural Network

Two layer neural network (alt. one hidden-layer neural network)

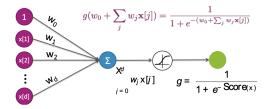
Single

$$out(x) = g\left(w_0 + \sum_j w_j x[j]\right)$$

1-hidden layer

$$out(x) = g\left(w_0 + \sum_k w_k g\left(w_0^{(k)} + \sum_j w_j^{(k)} x[j]\right)\right)$$

Perceptron to Logistic Regression



Deep Learning: Activations, FFN and more

Choices for Non-Linear Activation Function

Sigmoid

-Historically popular, but (mostly) fallen out of favor •Neuron's activation saturates (weights get very large -> gradients get small) •Not zero-centered -> other issues in the gradient steps -When put on the output layer, called "softmax" because interpreted as class probability (soft assignment)

•Hyperbolic tangent g(x) = tanh(x)

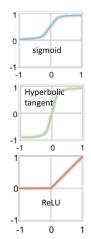
-Saturates like sigmoid unit, but zero-centered

•Rectified linear unit (ReLU) $g(x) = x^+ = max(0,x)$

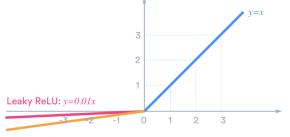
-Most popular choice these days -Fragile during training and neurons can "die off"... be careful about learning rates -"Noisy" or "leaky" variants

•Softplus g(x) = log(1+exp(x))

-Smooth approximation to rectifier activation



RELU vs Leaky RELU

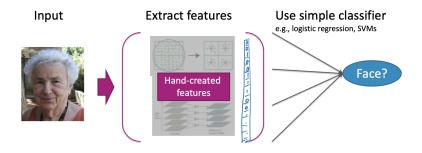


Parametric ReLU: y=ax

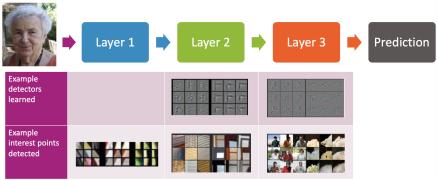
Tensorflow Playground Demo

11/61

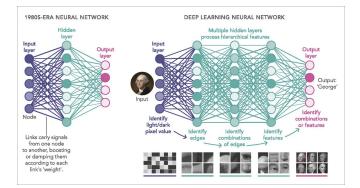
Computer vision before deep learning

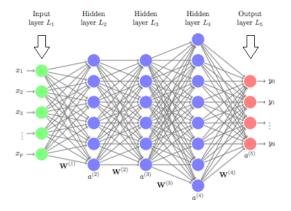


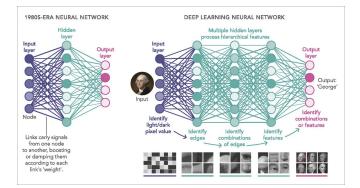
Computer vision after deep learning

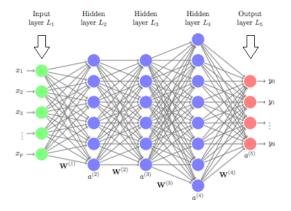


[Zeiler & Fergus '13]









Compute the number of parameters in DNN model

Consider a DNN model with 3 hidden layers where each hidden layer has 1000 neurons. Let the input layer be raw pixels from a 100x100 image and the output layer has 10 dimensions, let's say for a 10 class image classification example. How many total parameters exist in the DNN model?

- 10 million parameters
- 2 11 million parameters
- 12 million parameters
- I3 million parameters

SGD with mini-batch

Same recipe works for DNN as we saw for logistic regression. SGD mini-batch is the staple diet. However there are some **learning rate schedulers** that are known to work better for DNNs - Such as Adagrad and more recently, ADAM. ADAM adapts the learning rate to each individual parameter instead of having a global learning rate.

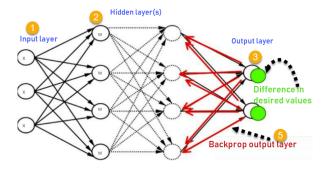
SGD with mini-batch

Same recipe works for DNN as we saw for logistic regression. SGD mini-batch is the staple diet. However there are some **learning rate schedulers** that are known to work better for DNNs - Such as Adagrad and more recently, ADAM. ADAM adapts the learning rate to each individual parameter instead of having a global learning rate.

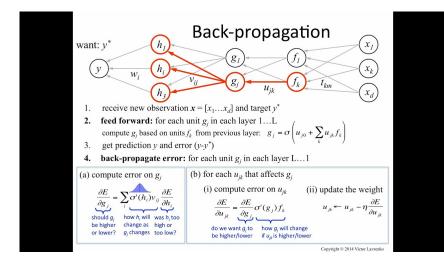
How do we compute gradient in a DNN?

Back-propagation!

Forward Propagation vs Back-propagation



Back Propagation explained



Back Propagation Summary

Back Prop

Back prop is one of the fundamental backbones of the training modules behind deep learning and beyond (including for example ChatGPT). What exactly is back prop? It is just a way to unravel gradient computation in the neural network. Back prop is how we would **compute the gradient** in a neural network.

22 / 61

Back Propagation Summary

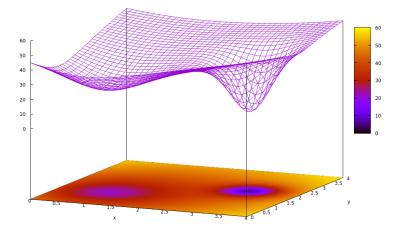
Back Prop

Back prop is one of the fundamental backbones of the training modules behind deep learning and beyond (including for example ChatGPT). What exactly is back prop? It is just a way to unravel gradient computation in the neural network. Back prop is how we would **compute the gradient** in a neural network.

Back Prop as information flow

It can also be thought of as flow information from the error in the output (the loss function) down to the weights. Update the weights so we don't make **this error** next time around. Back prop is a way to do **gradient descent in neural networks!**

Good vs Bad Local minima



ICE #2: Which of the following is not a hyper-parameter in deep learning?

- Learning rate
- 2 Number of Hidden Layers
- Number of neurons per hidden layer
- All of the above

Hyper-parameters

- Learning rate
- Oumber of Hidden Layers
- On Number of neurons per hidden layer

Hyper-parameters

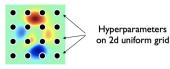
- Learning rate
- 2 Number of Hidden Layers
- Number of neurons per hidden layer
- Type of non-linear activation function used

Hyper-parameters

- Learning rate
- Number of Hidden Layers
- Number of neurons per hidden layer
- Type of non-linear activation function used
- Anything else?

Hyper-parameter tuning methods

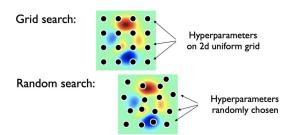
Grid search:



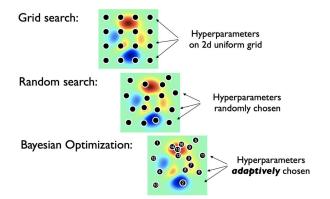
(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 14 February 21, 2023

3 26 / 61

Hyper-parameter tuning methods



Hyper-parameter tuning methods



Over-fitting in DNNs

How to handle over-fitting in DNNs

A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.

Over-fitting in DNNs

How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2

Over-fitting in DNNs

How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2
- More common over-fitting strategy for DL?

Over-fitting in DNNs

How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2
- In the second strategy for DL?
- Oropouts!

Over-fitting in DNNs

How to handle over-fitting in DNNs

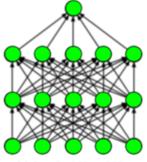
- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2
- In the second strategy for DL?
- Oropouts!
- Searly stopping is also a great strategy! Stop training the DL model when the validation error starts increasing. How's this different from regular validation we were doing earlier??

Over-fitting in DNNs

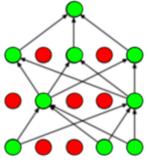
How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2
- In the second strategy of the second strategy for DL?
- Oropouts!
- Searly stopping is also a great strategy! Stop training the DL model when the validation error starts increasing. How's this different from regular validation we were doing earlier??
- Book by Yoshua Bengio has tons of details and great reference for Deep Learning!

Taking care of Over-fitting: Dropouts



(a) Standard Neural Net



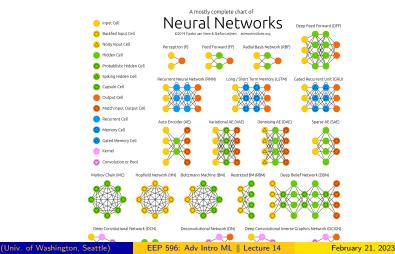
(b) After applying dropout.

Tensorflow Playground Demo

Tensorflow Playground Demo

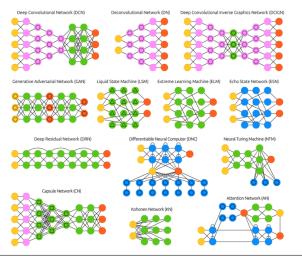
More DL Architectures

Neural Networks Zoo Zoo Reference



More DL Architectures

Neural Networks Zoo

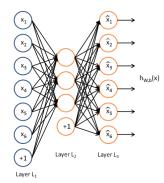


(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 14

February 21, 2023

Auto Encoders

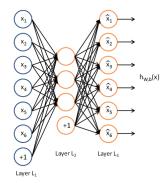


PCA vs Auto Encoder

Which of the following statements are true ?

- Both PCA and Auto Encoders serve the purpose of dimensionality reduction
- They are both linear models but one uses a neural nets architecture and the other is based on projections
- **§** PCA is robust to outliers while Auto Encoders are not
- Auto Encoders are as better than Glove Embeddings to find low-dim embeddings for words

PCA vs Auto-Encoders



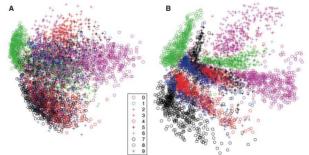
AutoEncoders and Dimensionality Reduction

Visualization Performance Auto Encoder Reference Paper

AutoEncoders and Dimensionality Reduction

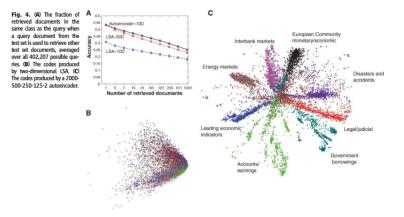
Reading Reference for AE Dimensionality Reduction

Fig. 3. (A) The twodimensional codes for 500 digits of each class produced by taking the first two principal components of all 60,000 training images. (B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder. For an alternative visualization. see (d).



AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction



 Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Ose Neural Networks architecture and hence can encode non-linearity in the embeddings

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Ose Neural Networks architecture and hence can encode non-linearity in the embeddings
- Anything else?

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Ose Neural Networks architecture and hence can encode non-linearity in the embeddings
- Anything else?
- Auto Encoders can learn convolutional layers instead of dense layers -Better for images! More flexibility!!

Removing obstacles in images

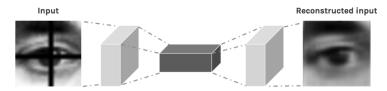


Figure 12: Reconstructed image from missing image [14]

Removing obstacles in images

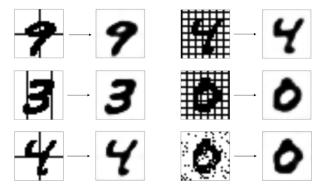
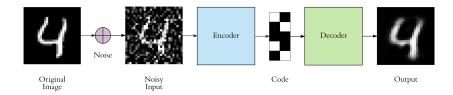


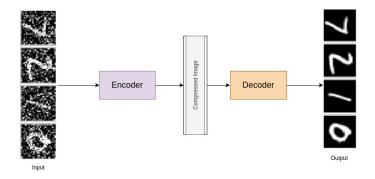
Figure 13: Source [15]

Coloring Images

Gray Image	Vanilla Autoencoder	Merge Model (YCbCr)	Merge Model (LAB)	Original
R	R			







Details

• Just like an Auto Encoder

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

- Perceptron
- Auto Encoder
- Oe-noising Auto Encoder
- K-means++
- Some of the above
- Ill of the above

5 mins

Discuss in your groups what are some real-world applications of any or many of the Auto Encoder Architectures we discussed so far you can think of in your area of work or in a standard context e.g. images.

Example

I love this car! Positive Sentiment

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

Example

I don't think its a bad car at all! \rightarrow Positive Sentiment

Example

I love this car! Positive Sentiment

Example

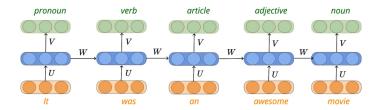
I am not sure I love this car! Negative Sentiment

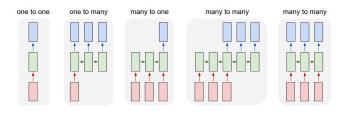
Example

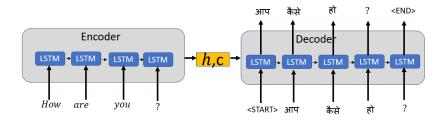
I don't think its a bad car at all! \rightarrow Positive Sentiment

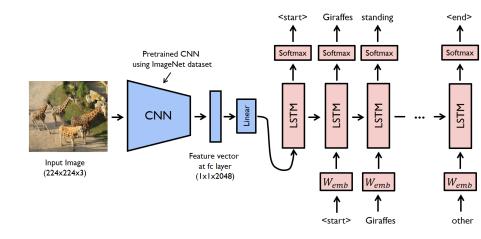
Example

Have to carry the **context(state)** from some-time back to fully understand what's happening!









EEP 596: Adv Intro ML || Lecture 14

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion application, which can help complete partial sentences into full sentences through suggestions (auto-complete). How would you use what we have learned so far to model this? What architecture would you use? What would be your data? And what are some pitfalls or painpoints your model should address?

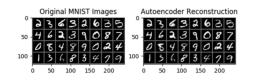
Sparse Auto Encoders

Sparse AE



Sparse Auto Encoders

Sparse AE Reference



Methods	Best MSE Loss (MNIST or CIFAR-10)		
Simple Autoencoder	0.0318 (MNIST)		
Sparse Autoencoder (L1 reg)	0.0301 (MNIST)		

Experiment Results

Sparse Auto Encoders

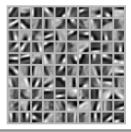
Sparse AE Reference

Autoencoder Sparse Autoencoder with L1 Reg ò ò

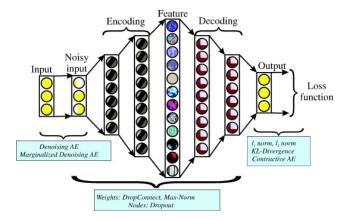
(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 14

Input Image that maximizes activations for each neuron in hidden layer!



Sparse De-noising Auto Encoders



(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 14

February 21, 2023