EEP 596: Adv Intro ML || Lecture 15 Dr. Karthik Mohan

Univ. of Washington, Seattle

February 23, 2023

- Anomaly Detection
- Deep Learning Basics

- Deep Learning Fundamentals
- Auto Encoders
- Deep Learning in NLP
- Sequence to Sequence models

Tensorflow Playground Demo

Walk through Tensorflow Playground Demo

ICE #1: Which of the following is not a hyper-parameter in deep learning?

- Learning rate
- 2 Number of Hidden Layers
- Number of neurons per hidden layer
- All of the above

Hyper-parameters

- Learning rate
- 2 Number of Hidden Layers
- On Number of neurons per hidden layer

Hyper-parameters

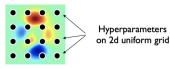
- Learning rate
- 2 Number of Hidden Layers
- On Number of neurons per hidden layer
- Type of non-linear activation function used

Hyper-parameters

- Learning rate
- Number of Hidden Layers
- On Number of neurons per hidden layer
- Type of non-linear activation function used
- Anything else?

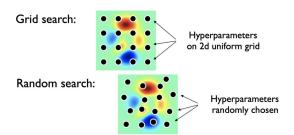
Hyper-parameter tuning methods

Grid search:

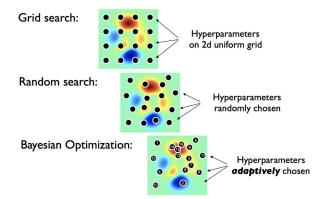


(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 15 February 23, 2023

Hyper-parameter tuning methods



Hyper-parameter tuning methods



How to handle over-fitting in DNNs

A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2

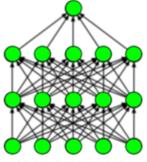
- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2
- More common over-fitting strategy for DL?

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2
- In the second strategy for DL?
- Oropouts!

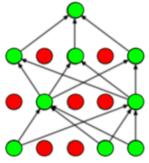
- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- 2 Weight regularization can help ℓ_1, ℓ_2
- In the second strategy for DL?
- Oropouts!
- Searly stopping is also a great strategy! Stop training the DL model when the validation error starts increasing. How's this different from regular validation we were doing earlier??

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2
- In the second strategy of the second strategy for DL?
- Oropouts!
- Searly stopping is also a great strategy! Stop training the DL model when the validation error starts increasing. How's this different from regular validation we were doing earlier??
- Book by Yoshua Bengio has tons of details and great reference for Deep Learning!

Taking care of Over-fitting: Dropouts



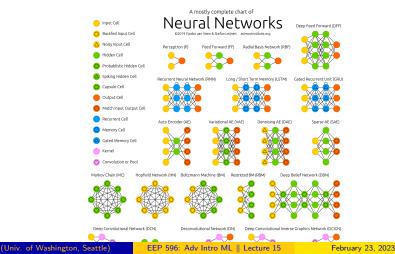
(a) Standard Neural Net



(b) After applying dropout.

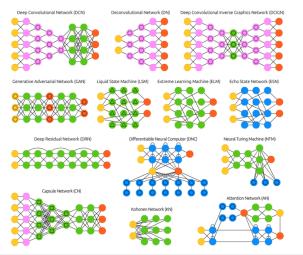
More DL Architectures

Neural Networks Zoo Zoo Reference



More DL Architectures

Neural Networks Zoo

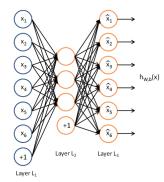


(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 15

February 23, 2023

Auto Encoders

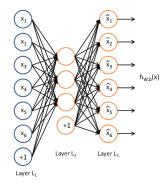


PCA vs Auto Encoder

Which of the following statements are true ?

- Both PCA and Auto Encoders serve the purpose of dimensionality reduction
- They are both linear models but one uses a neural nets architecture and the other is based on projections
- **§** PCA is robust to outliers while Auto Encoders are not
- Auto Encoders are as better than Glove Embeddings to find low-dim embeddings for words

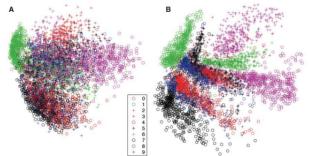
PCA vs Auto-Encoders



AutoEncoders and Dimensionality Reduction

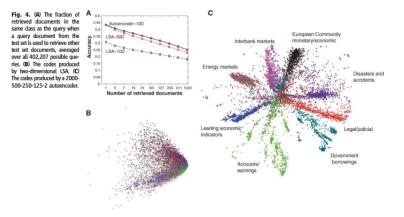
Reading Reference for AE Dimensionality Reduction

Fig. 3. (A) The twodimensional codes for 500 digits of each class produced by taking the first two principal components of all 60,000 training images. (B) The two-dimensional codes found by a 784-1000-500-250-2 autoencoder. For an alternative visualization. see (d).



AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction



 Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Ose Neural Networks architecture and hence can encode non-linearity in the embeddings

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Our Second Se
- AEs can learn non-linear embeddings for data in a self-supervised manner!

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Output See Neural Networks architecture and hence can encode non-linearity in the embeddings
- AEs can learn non-linear embeddings for data in a self-supervised manner!
- Can be a starting point to extract concise feature embeddings for a supervised learning model
- Anything else?

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Output See Neural Networks architecture and hence can encode non-linearity in the embeddings
- AEs can learn non-linear embeddings for data in a self-supervised manner!
- Or a starting point to extract concise feature embeddings for a supervised learning model
- Anything else?
- Auto Encoders can learn convolutional layers instead of dense layers -Better for images! More flexibility!!

Removing obstacles in images

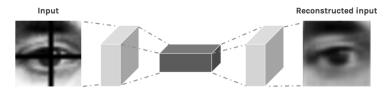


Figure 12: Reconstructed image from missing image [14]

Removing obstacles in images

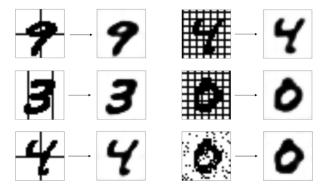
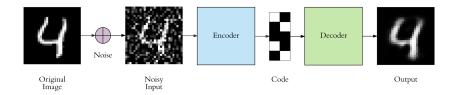


Figure 13: Source [15]

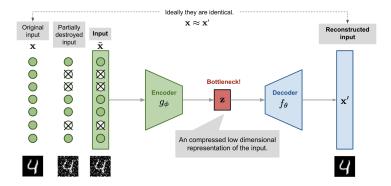
Coloring Images

Gray Image	Vanilla Autoencoder	Merge Model (YCbCr)	Merge Model (LAB)	Original
				X
R	R			R

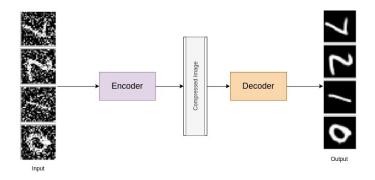
De-noising Auto Encoders



De-noising Auto Encoders



De-noising Auto Encoders



February 23, 2023

Details

• Just like an Auto Encoder

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)
- De-noising AEs can be used to learn **noise-aware embeddings** -Helps with improving robustness of downstream models

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

- Perceptron
- Q Auto Encoder
- Oe-noising Auto Encoder
- K-means++
- Some of the above
- Ill of the above

AutoEncoder Tensorflow Tutorial

AutoEncoder TensorFlow Tutorial

28 / 63

5 mins

Discuss in your groups what are some real-world applications of any or many of the Auto Encoder Architectures we discussed so far you can think of in your area of work or in a standard context e.g. images.

Example

I love this car! Positive Sentiment

30 / 63

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

30 / 63

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

Example

I don't think its a bad car at all! \rightarrow Positive Sentiment

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

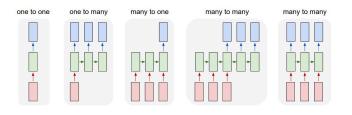
Example

I don't think its a bad car at all! \rightarrow Positive Sentiment

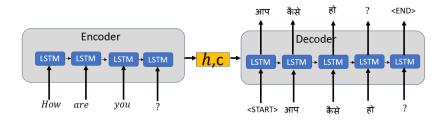
Example

Have to carry the **context(state)** from some-time back to fully understand what's happening!

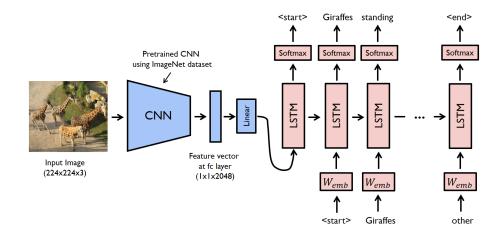
Sequence to Sequence Model (LSTM) Applications



Sequence to Sequence Model (LSTM) Applications



Sequence to Sequence Model (LSTM) Applications



EEP 596: Adv Intro ML || Lecture 15

33 / 63

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion application, which can help complete partial sentences into full sentences through suggestions (auto-complete). How would you use what we have learned so far to model this? What architecture would you use? What would be your data? And what are some pitfalls or painpoints your model should address?

- Topic Modeling
- Machine Translation/Language Translation

- Topic Modeling
- Ø Machine Translation/Language Translation
- Sentiment Analysis

- Topic Modeling
- Ø Machine Translation/Language Translation
- Sentiment Analysis
- Chat bots

- Topic Modeling
- Ø Machine Translation/Language Translation
- Sentiment Analysis
- Chat bots
- Ocument Summarization

- Topic Modeling
- Ø Machine Translation/Language Translation
- Sentiment Analysis
- Chat bots
- Ocument Summarization
- Many more!

36 / 63

Topic Modeling

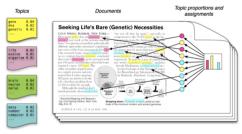
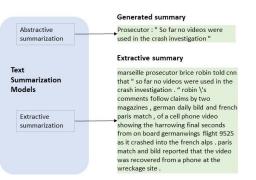


Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Document Summarization

Input Article

Marseille, France (CNN) The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that " so far no videos were used in the crash investigation . " He added, " A person who has such a video needs to immediately give it to the investigators . " Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps . All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. ...



Document Summarization — Extractive

ROUGE score: Recall-Oriented Understudy for Gisting Evaluation
ROUGE-N: N-gram overlap between two summaries

40 / 63

ICE #4

ROUGE-1

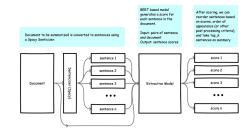
Consider the truth summary and an automated summary of an article from International Geographic! Find the ROUGE-N score based on finding the proportion of N-grams in the truth summary that are also in the automated summary for N = 1.

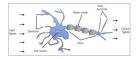
Truth Summary: A symbiotic relationship exists between these two species. The cows feed on wild grass and the egrets feed on the tics found on the surface of the cows.

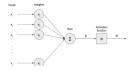
Automated Summary: These two species have a symbiotic relationship. ROUGE-1 =

a) 0.33 b) 0.4 c) 0.2 d) 0.25

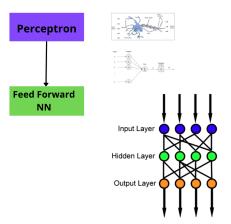
Document Summarization

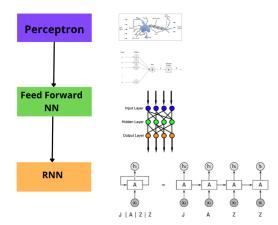


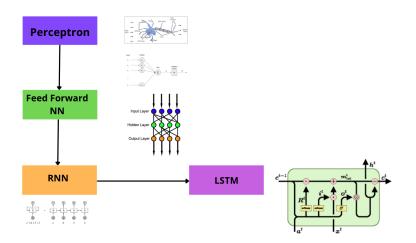


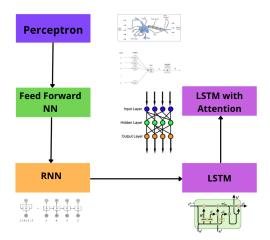


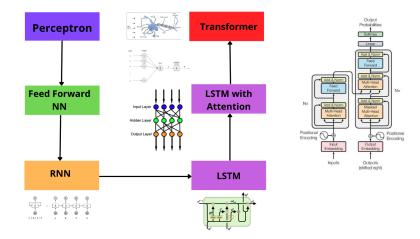
43 / 63

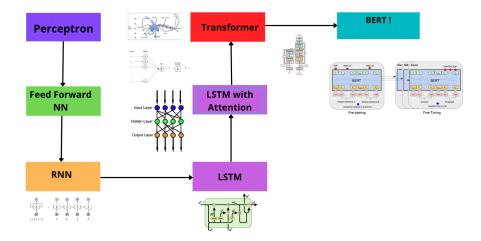




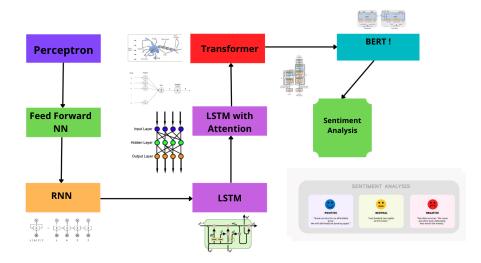




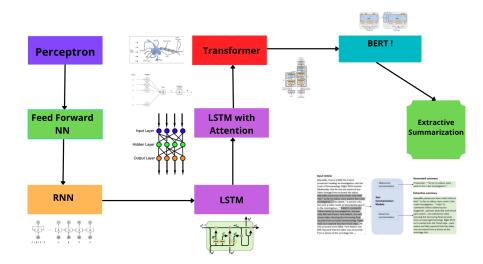




Evolution of DNN architectures for NLP!



Evolution of DNN architectures for NLP!

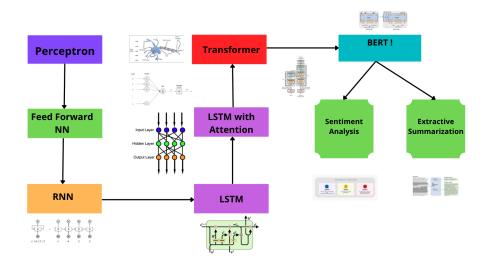


EEP 596: Adv Intro ML || Lecture 15

February 23, 2023

51/63

Evolution of DNN architectures for NLP!



(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 15

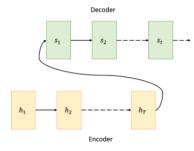
February 23, 2023

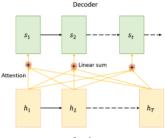
RNN vs LSTM

Which of the following statements are NOT true?

- LSTM doesn't have the exploding/vanishing gradients issue as it occurs in RNNs
- STM applies to sequential language tasks while RNNs applies to non-sequential language tasks
- **States** LSTM is better than RNN in most language tasks
- STMs can be used for machine translation tasks

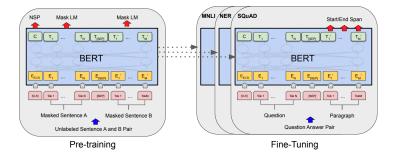
LSTM with attention



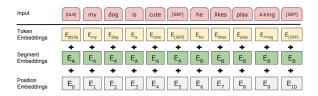


Encoder

BERT - Bi-directional Encoders from Transformers



BERT Embeddings



BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Onext-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

57 / 63

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Onext-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

ICE #4: Supervised or Un-supervised?

Are the above two tasks supervised or un-supervised?

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Onext-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

ICE #4: Supervised or Un-supervised?

Are the above two tasks supervised or un-supervised?

Data set!

English Wikipedia and book corpus documents!

BERT - Bi-directional Encoders from Transformers

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

BERT - Bi-directional Encoders from Transformers

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
OpenAI GPT	-	78.0
BERTBASE	81.6	-
BERTLARGE	86.6	86.3
Human (expert) [†]	-	85.0
Human (5 annotations) [†]		88.0

Table 4: SWAG Dev and Test accuracies. [†]Human performance is measured with 100 samples, as reported in the SWAG paper.

MLM

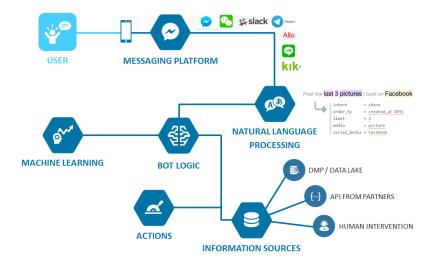
What's the real point of using masked language models (MLM) as compared to regular language models (LM). Select ones that apply!

- MLMs are used to learn how words fit together in a sentence
- MLMs incorporate context from both directions and hence lead to better embeddings and predictions as compared to LMs
- MLMs are great for complicated language tasks such as QA where you need to understand the sentence as a whole to give an appropriate answer to a question

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion application, which can help complete partial sentences into full sentences through suggestions (auto-complete). How would you use what we have learned so far to model this? What architecture would you use? What would be your data? And what are some pitfalls or pain-points your model should address?

Chat Bots



Retrieving Tables with Chat bots - 7 mins

You are building a chat-bot product at your company where queries come in from customers that own data in your company's cloud service. Your chat-bot responds retrieves the right table or combination of tables (through merge/filter operations) that contains this information or returns back with follow up questions to get more precise information or get back with a "Sorry, I don't have that information" response. How would you go about building a chat-bot like this? What data would you use? What ML models would you use, would it be supervised or un-supervised learning? What would be your evaluation metric? How would you test if your chat bot is accurate in its responses?