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ensorflow Playground Demo

Walk through
Tensorflow Playground Demo J
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https://playground.tensorflow.org

Hyper-parameters in Deep Learning

ICE #1: Which of the following is not a hyper-parameter in deep learning?
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer
Q All of the above
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Hyper-parameters in Deep Learning
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© Number of Hidden Layers

© Number of neurons per hidden layer
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers
© Number of neurons per hidden layer

©Q Type of non-linear activation function used
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Hyper-parameters in Deep Learning

Hyper-parameters
© Learning rate
© Number of Hidden Layers

© Number of neurons per hidden layer

©Q Type of non-linear activation function used
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Hyper-parameter tuning methods

Grid search: * &
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Hyper-parameter tuning methods

Grid search: O (7§ C
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Hyper-parameter tuning methods
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of

over-fitting.
vl
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_ \71‘6"“’\

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 15 February 23, 2023 10/63




S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

© Weight regularization can help - 41, />
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Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

@ Weight regularization can help - 41, >

© More common over-fitting strategy for DL?
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points

or even a million data points will overfit unless we take care of
over-fitting.

© Weight regularization can help - 41, />

© More common over-fitting strategy for DL?
@ Dropouts!
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - /1, {5
More common over-fitting strategy for DL?

Dropouts!

© 000

Eafly stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??
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S
Over-fitting in DNNs

How to handle over-fitting in DNNSs

©@ A DNN model with 100 million parameters and only 100k data points
or even a million data points will overfit unless we take care of
over-fitting.

Weight regularization can help - /1, {5
More common over-fitting strategy for DL?

Dropouts!

© 000

Early stopping is also a great strategy! Stop training the DL model
when the validation error starts increasing. How's this different from
regular validation we were doing earlier??

o

Book by Yoshua Bengio has tons of details and great reference for
Deep Learning!
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aking care of Over-fitting: Dropouts

(b) After applying dropout
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More DL Architectures

Neural Networks Zoo

/00 Reference
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Input Cell

Backfed Input Cell

O

/\ Noisy Input Cell

Perceptron (P)
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Hidden Cell

©) Probablistic Hidden Cell

. Output Cell

‘ Match Input Output Cell
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. Recurrent Cell

. Memory Cell

. Gated Memory Cell
Kernel

O Convolution or Pool

Markov Chain (MC)

Auto Encoder (AE)

Neural Networks

©2019 Fjodor van Veen & Stefan Leijnen  asimovinstitute.org

y
i A mostly complete chart of

Feed Forward (FF) Radial Basis Network (RBF)

@) Spiking Hidden Cell Recurrent Neural Network (RNN)
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Deconvolutional Network (DN)
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e
More DL Architectures

)
Neural Networks Zoo \;%ﬁ %/
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Auto Encoders
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ICE 42

PCA vs Auto Encoder
Which of the following statements are true ?

© Both PCA and Auto Encoders serve the purpose of dimensionality
reduction

© They are both linear models but one uses a neural nets architecture
and the other is based on projections

© PCA is robust to outliers while Auto Encoders are not

@ Auto Encoders are as better than Glove Embeddings to find low-dim
embeddings for words
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PCA vs Auto-Encoders
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AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

@ Use Neural Networks architecture and hence can encode non-linearity
in the embeddings
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

© Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© AEs can learn non-linear embeddings for data in a self-supervised
manner!
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

© Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© AEs can learn non-linear embeddings for data in a self-supervised
manner!

@ Can be a starting point to extract concise feature embeddings for a
supervised learning model o

@ Anything else? —) Dee—f"ow‘f

P
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AutoEncders Summary

© Auto-Encoders are a method for dimensionality reduction and can do
better than PCA for visualization

© Use Neural Networks architecture and hence can encode non-linearity
in the embeddings

© AEs can learn non-linear embeddings for data in a self-supervised
manner!

@ Can be a starting point to extract concise feature embeddings for a
supervised learning model

© Anything else?

QiAuto Encoders can learn convolutional layers instead of dense layers -

———

Better for images! More flexibility!!

\
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Removing obstacles in images
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Removing obstacles in images
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Figure 13: Source [15]
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Coloring Images

Gray Image

Vanilla Autoencoder

Merge Model (YCbCr) Merge Model (LAB)

Original
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De-noising Auto Encoders

Encoder

Decoder

Original Noisy Output
Image Input -_—
T
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De-noising Auto Encoders
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An compressed low dimensional
representation of the input.
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De-noising Auto Encoders
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De-noising Auto Encoders

Detalls
@ Just like an Auto Encoder

(Univ. of Washington, Seattle)
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De-noising Auto Encoders

Detalls
@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs@ purposg) but output is a
clean data point. -

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 15 February 23, 2023 26 /63




De-noising Auto Encoders

Detalls

@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!
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De-noising Auto Encoders

Detalls

@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!

@ Esp. useful for a category of objects or images (e.g. digit recognition
or face recognition, etc)

(Univ. of Washington, Seattle)
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De-noising Auto Encoders

Detalls

@ Just like an Auto Encoder

@ Difference: Noise is injected in the inputs on purpose but output is a
clean data point.

@ This forces the Auto Encoder to “de-noise” data, esp. useful for
images!

@ Esp. useful for a category of objects or images (e.g. digit recognition
or face recognition, etc)

@ De-noising AEs can be used to learn noise-aware embeddings -
Helps with improving robustness of downstream models
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ICE 43

Unsupervised Learning
Which of these is NOT an example of unsupervised learning?
© Perceptron
© Auto Encoder
© De-noising Auto Encoder
Q K-means++
© None of the above
O All of the above
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AutoEncoder Tensorflow Tutorial

AutoEncoder TensorFlow Tutorial
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https://www.tensorflow.org/tutorials/generative/autoencoder

Breakouts Time 1

5 mins

Discuss in your groups what are some real-world applications of any or
many of the Auto Encoder Architectures we discussed so far you can think
of in your area of work or in a standard context e.g. images.
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Sequence structure in NLP

Example J

| love this car! Positive Sentiment

(Univ. of Washington, Seattle)
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Sequence structure in NLP

Example J

| love this car! Positive Sentiment

Example
| am not sure | love this car! Negative Sentiment J
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Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
Example
| don't think its a bad car at alll — Positive Sentiment J

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 15 February 23, 2023 30 /63




Sequence structure in NLP

Example
| love this car! Positive Sentiment J
Example
| am not sure | love this car! Negative Sentiment J
Example
| don't think its a bad car at alll — Positive Sentiment J

Example

Have to carry the context(state) from some-time back to fully
understand what's happening!

(Univ. of Washington, Seattle)
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.
Sequence to Sequence Model (LSTM) Applications

one to one one to many many to one many to many many to many
1 T T T T
1 B i T T T
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.
Sequence to Sequence Model (LSTM) Applications
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Encoder ‘ Decode
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.
Sequence to Sequence Model (LSTM) Applications

<start>  Giraffes standing <end>
Pretrained CNN Softmax Softmax Softmax Softmax

using ImageNet dataset

\\

—>
—>
—>
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s > > > >
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e | Feature vector T T T
Input Image at fc layer

Wemb Wemb Wemb

<start> Giraffes other
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.
Breakouts Time #2

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). How would you use what we have
learned so far to model this? What architecture would you use? What

would be your data? And what are some pitfalls or painpoints your model
should address?

(Univ. of Washington, Seattle)
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I
Applications in Natural Language Processing (NLP)

Applications
© Topic Modeling

(Univ. of Washington, Seattle)
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I
Applications in Natural Language Processing (NLP)

Applications
© Topic Modeling

@ Machine Translation/Language Translation
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I
Applications in Natural Language Processing (NLP)

Applications
© Topic Modeling
@ Machine Translation/Language Translation

© Sentiment Analysis
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I
Applications in Natural Language Processing (NLP)

Applications
© Topic Modeling
@ Machine Translation/Language Translation

© Sentiment Analysis
©Q Chat bots
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I
Applications in Natural Language Processing (NLP)

Applications
© Topic Modeling
@ Machine Translation/Language Translation
© Sentiment Analysis
©Q Chat bots

©@ Document Summarization
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I
Applications in Natural Language Processing (NLP)

Applications
© Topic Modeling
@ Machine Translation/Language Translation
© Sentiment Analysis
©Q Chat bots

©@ Document Summarization

O Many more!

(Univ. of Washington, Seattle)
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Extra Slides
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opic Modeling

Topics

gene 0.64
dna 0.02
genetic 0.01

\./—

life 0.0
evoive 0.01
organise .01

data 0.0
nusber 0.02
computer 9.01

Seeking Life's Bare (Genetic) Necessities

—

p=

Documents

v YORN

B

o

x

Topic proportions and
assignments

Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84
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Document Summarization

Input Article

Marseille, France (CNN) The French Generated summary

prosecutor leading an investigation into the Abstractive Prosecutor : " So far no videos were
crash of Germanwings Flight 9525 insisted summarization used in the crash investigation "
Wednesday that he was not aware of any

video footage from on board the plane. Extractive summary

Marseille prosecutor Brice Robin told CNN

that " so far no videos were used in the crash Text marseille prosecutor brice robin told cnn
investigation . " He added, " A person who Summarization that " so far no videos were used in the
has such a video needs to immediately give it Models crash investigation . “ robin \'s

to the investigators . " Robin\'s comments comments follow claims by two

follow claims by two magazines, German magazines , german daily bild and french
daily Bild and French Paris Match, of a cell Extractive paris match , of a cell phone video
phone video showing the harrowing final summarization showing the harrowing final seconds
seconds from on board Germanwings Flight from on board germanwings flight 9525
9525 as it crashed into the French Alps . All as it crashed into the french alps . paris
150 on board were killed. Paris Match and match and bild reported that the video
Bild reported that the video was recovered was recovered from a phone at the

from a phone at the wreckage site. ... wreckage site .
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Document Summarization — Extractive

(Univ. of Washington, Seattle)
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Evaluation Metrics

© ROUGE score: Recall-Oriented Understudy for Gisting Evaluation

@ ROUGE-N: N-gram overlap between two summaries

(Univ. of Washington, Seattle)
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I
ICE 4

ROUGE-1 ‘

Consider the truth summary and an automated summary of an article from
International Geographic! Find the ROUGE-N score based on finding the
proportion of N-grams in the truth summary that are also in the
automated summary for N = 1.

Truth Summary: A symbiotic relationship exists between these two
species. The cows feed on wild grass and the egrets feed on the tics found
on the surface of the cows.

Automated Summary: These two species have a symbiotic relationship.
ROUGE-1 =

a) 0.33b) 0.4 ¢c) 0.2d) 0.25
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Document Summarization

Document to be summarized is converted to sentences using

a Spacy Senticizer.

BERT based model
generates a score for
each sentence in the
document.

Input: pairs of sentence
and document
Output: sentence scores

After scoring, we can
reorder sentences based
on scores, order of
appearance (or other
post processing criteria),
and take top_k

sentences as summary

Document

(Aoodg) Jaziduaguas

sentence 1
' .

sentence n

Extractive Model

score 1

score 2

score 3

scoren
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e
Evolution of DNN architectures for NLP!

Vbbb

vvvvv
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e
Evolution of DNN architectures for NLP!

LR I )

Feed Forward
NN

Input Layer

Hidden Layer

Output Layer
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e
Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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ICE +#5

RNN vs LSTM
Which of the following statements are NOT true?

© LSTM doesn't have the exploding/vanishing gradients issue as it
occurs in RNNs

@ LSTM applies to sequential language tasks while RNNs applies to
non-sequential language tasks

© LSTM is better than RNN in most language tasks

© LSTMs can be used for machine translation tasks

(Univ. of Washington, Seattle)
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BERT - Bi-directional Encoders from Transformers
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Embeddings
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S
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?
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BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?

|ICE #4: Supervised or Un-supervised? J

© Are the above two tasks supervised or un-supervised?
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S
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?

|ICE #4: Supervised or Un-supervised?

© Are the above two tasks supervised or un-supervised? J
Data set!
English Wikipedia and book corpus documents! J

(Univ. of Washington, Seattle)
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BERT - Bi-directional Encoders from Transformers
System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 874 91.3 45.4 80.0 82.3 56.0 75.1
BERTEgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT | ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

(Univ. of Washington, Seattle)
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BERT - Bi-directional Encoders from

System Dev Test
ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAl GPT - 78.0
BERTgAsE 81.6 -

BERTLARGE 86.6 86.3
Human (expert)T - 850
Human (5 annotations)’ - 88.0

ransformers

Table 4: SWAG Dev and Test accuracies. THuman per-

formance is measured with 100 samples, as reported in
the SWAG paper.

(Univ. of Washington, Seattle)
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ICE 46

MLM

What's the real point of using masked language models (MLM) as
compared to regular language models (LM). Select ones that apply!

© MLMs are used to learn how words fit together in a sentence

@ MLMs incorporate context from both directions and hence lead to
better embeddings and predictions as compared to LMs

© MLMs are great for complicated language tasks such as QA where
you need to understand the sentence as a whole to give an
appropriate answer to a question
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.
Breakouts Time #1

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). How would you use what we have
learned so far to model this? What architecture would you use? What

would be your data? And what are some pitfalls or pain-points your model
should address?

(Univ. of Washington, Seattle)
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Chat Bots
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Breakouts Time #2

Retrieving Tables with Chat bots — 7 mins

You are building a chat-bot product at your company where queries come
in from customers that own data in your company’s cloud service. Your
chat-bot responds retrieves the right table or combination of tables
(through merge/filter operations) that contains this information or returns
back with follow up questions to get more precise information or get back
with a “Sorry, | don't have that information” response. How would you go
about building a chat-bot like this? What data would you use? What ML
models would you use, would it be supervised or un-supervised learning?
What would be your evaluation metric? How would you test if your chat

bot is accurate in its responses?
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