EEP 596: Adv Intro ML || Lecture 15 Dr. Karthik Mohan

Univ. of Washington, Seattle

February 23, 2023

- Anomaly Detection
- **Deep Learning Basics**

- Deep Learning Fundamentals
- Auto Encoders
- Deep Learning in NLP
- Sequence to Sequence models

Tensorflow Playground Demo

Walk through Tensorflow Playground Demo

ICE #1: Which of the following is not a hyper-parameter in deep learning?

- Learning rate
- Oumber of Hidden Layers
- Sumber of neurons per hidden layer
- All of the above

Hyper-parameters

- Learning rate procebreally not a hyper paren choose a Le schudur
 Numb Number of Hidden Layers
 - Number of neurons per hidden layer 3

Hyper-parameters

- Learning rate
- Oumber of Hidden Layers
- Number of neurons per hidden layer
- Type of non-linear activation function used

Hyper-parameters

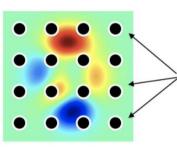
- Learning rate
- Number of Hidden Layers 2
- Number of neurons per hidden layer 3
- Type of non-linear activation function used

Anything else?] - P other hyper-params depending on architecture?

(r.g. Conv. Strikelength in CNN)

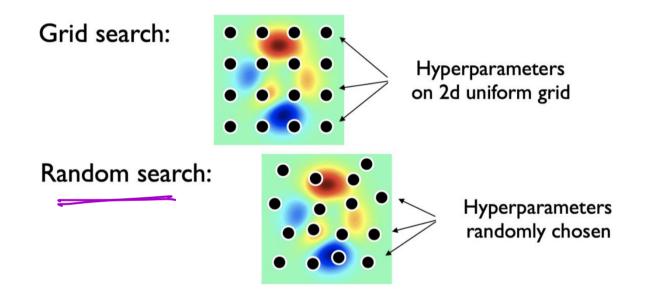
Hyper-parameter tuning methods

Grid search:

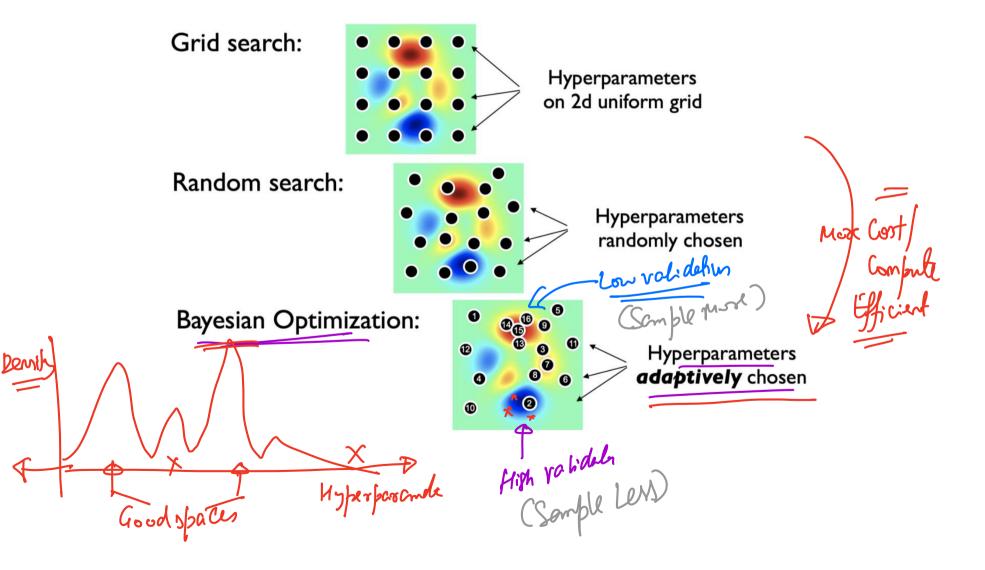


Hyperparameters on 2d uniform grid (prick the best on atun date set)

Hyper-parameter tuning methods

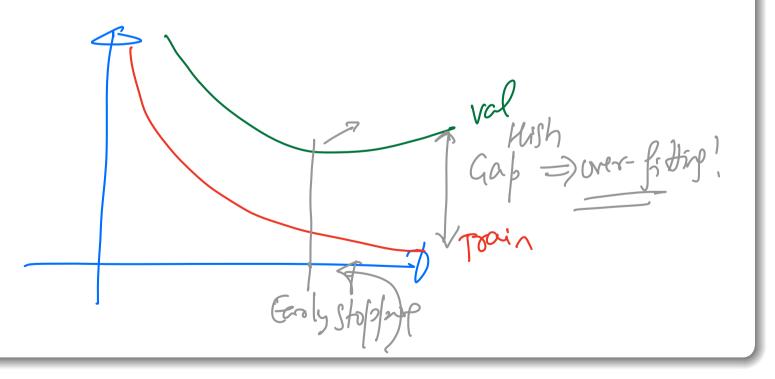


Hyper-parameter tuning methods



How to handle over-fitting in DNNs

A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.



How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2

How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2
- More common over-fitting strategy for DL?

How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2
- More common over-fitting strategy for DL?

Lyerry specific to DL

Dropouts!

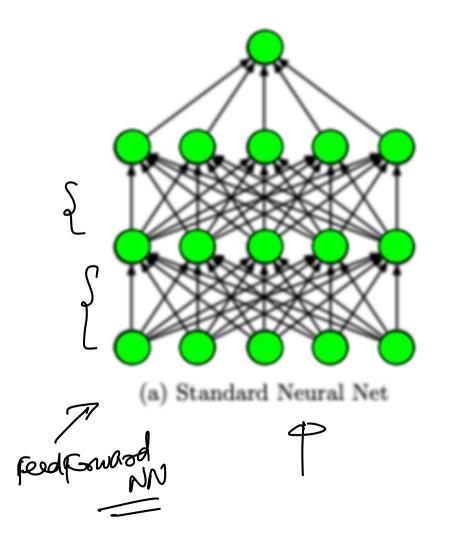
How to handle over-fitting in DNNs

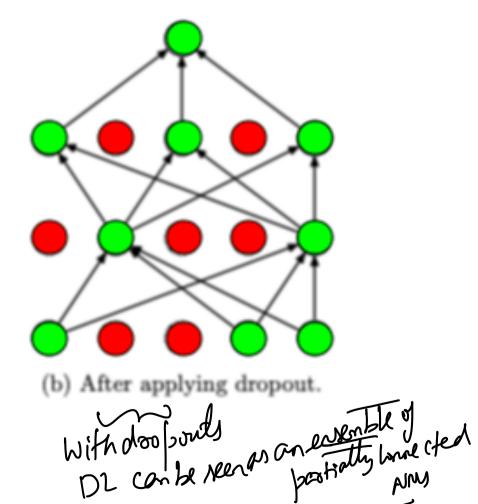
- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2
- More common over-fitting strategy for DL?
- Oropouts!
- Stop training the DL model when the validation error starts increasing. How's this different from regular validation we were doing earlier??

How to handle over-fitting in DNNs

- A DNN model with 100 million parameters and only 100k data points or even a million data points will overfit unless we take care of over-fitting.
- ② Weight regularization can help ℓ_1, ℓ_2
- More common over-fitting strategy for DL?
- Oropouts!
- Stop training the DL model when the validation error starts increasing. How's this different from regular validation we were doing earlier??
- Sook by Yoshua Bengio has tons of details and great reference for Deep Learning!

Taking care of Over-fitting: Dropouts



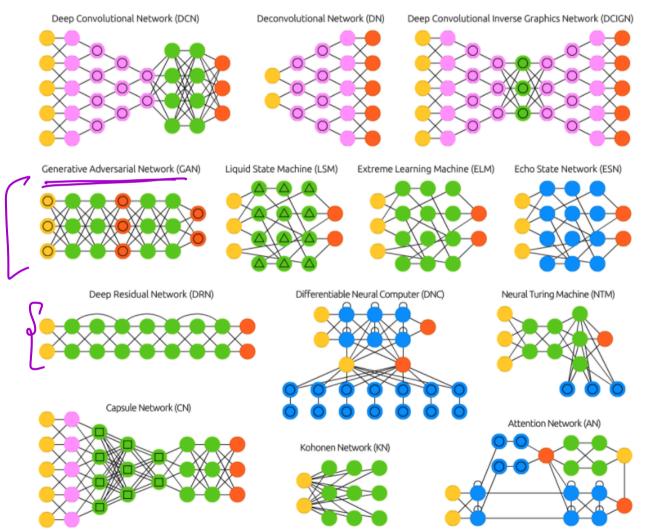


More DL Architectures

Neural Networks Zoo **Zoo Reference** formected tolp A mostly complete chart of Neural Networks Input Cell Deep Feed Forward (DFF) Backfed Input Cell ©2019 Fiodor van Veen & Stefan Leiinen asimovinstitute.org Noisy Input Cell Radial Basis Network (RBF) Feed Forward (FF) Perceptron (P) Hidden Cell Probablistic Hidden Cell Josne of the poster models for requestial NLP poly Spiking Hidden Cell Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU) Capsule Cell X Output Cell Match Input Output Cell Recurrent Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE) Memory Cell Gated Memory Cell Kernel Convolution or Pool Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Deep Belief Network (DBN) Restricted BM (RBM) Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN) 12/63 (Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 15 February 23, 2023

More DL Architectures

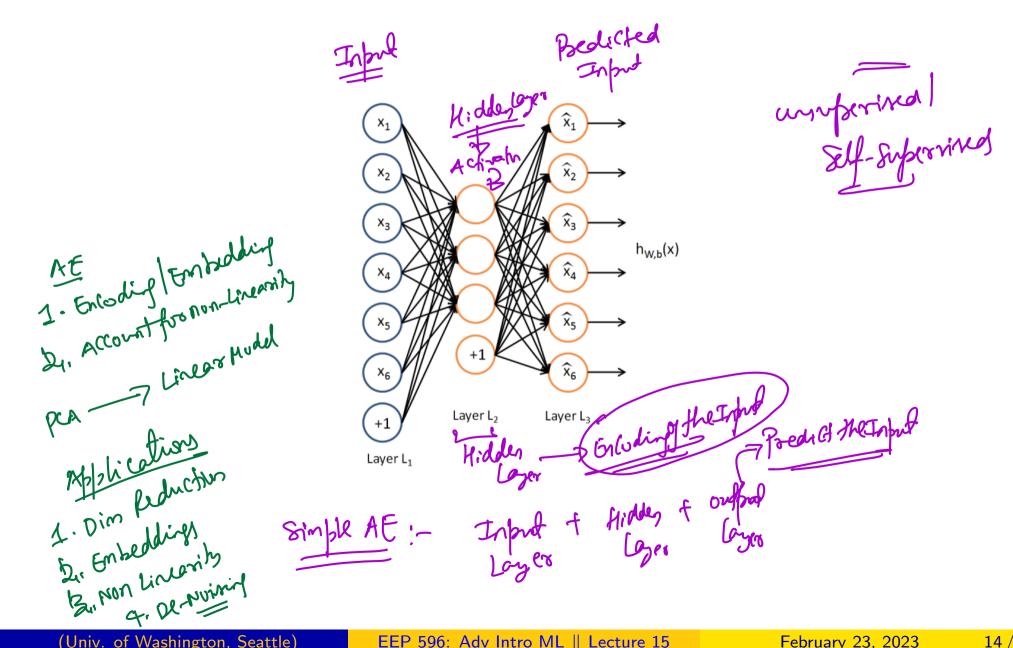
Neural Networks Zoo



(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 15

Auto Encoders



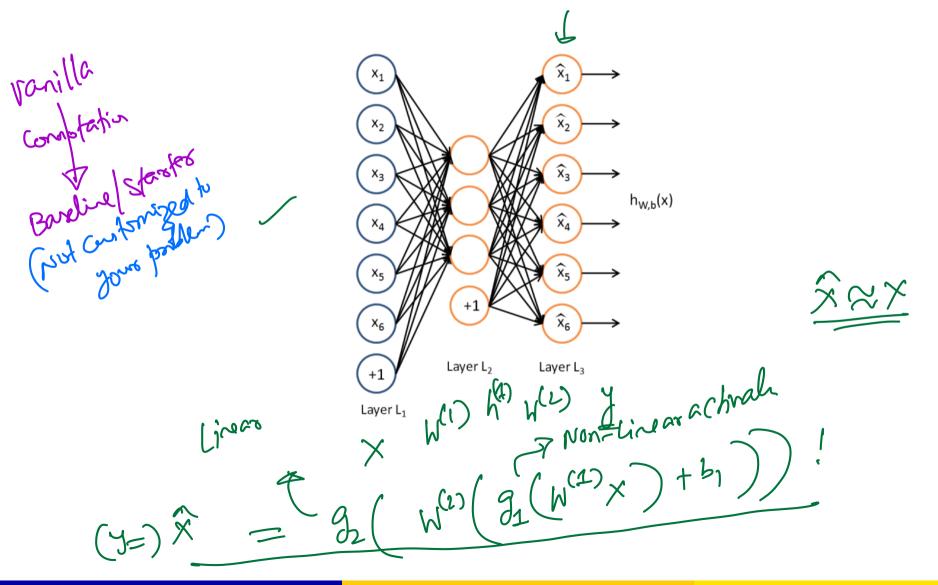
(Univ. of Washington, Seattle)

PCA vs Auto Encoder

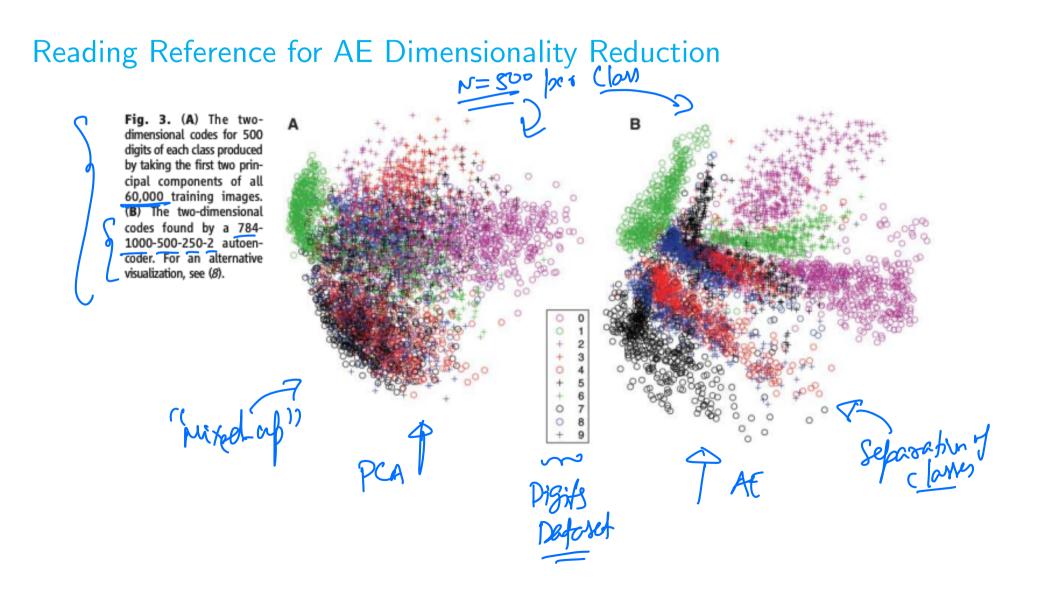
Which of the following statements are true ?

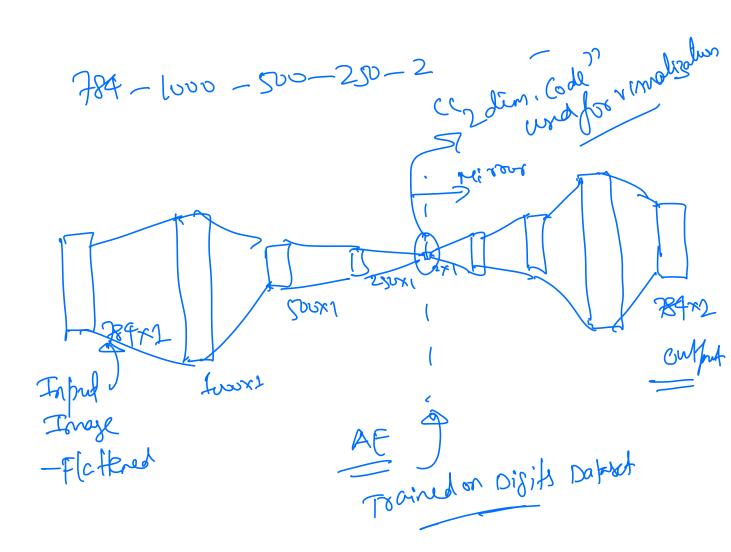
- Both PCA and Auto Encoders serve the purpose of dimensionality reduction
- They are both linear models but one uses a neural nets architecture and the other is based on projections
- OPCA is robust to outliers while Auto Encoders are not
- Auto Encoders are as better than Glove Embeddings to find low-dim embeddings for words

PCA vs Auto-Encoders



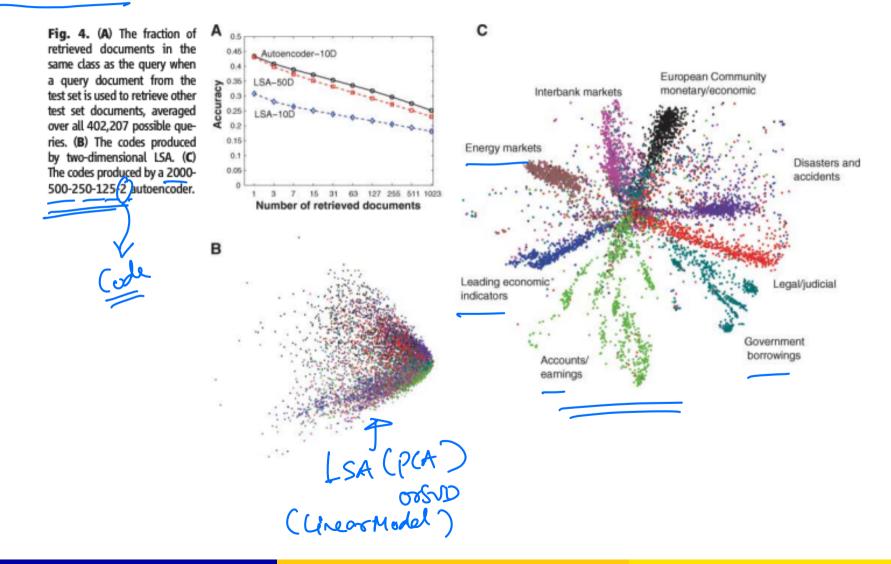
AutoEncoders and Dimensionality Reduction





AutoEncoders and Dimensionality Reduction

Reading Reference for AE Dimensionality Reduction



 Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization

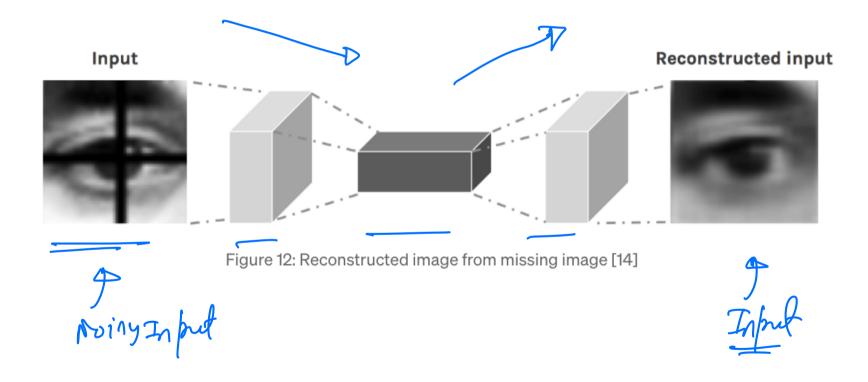
- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- AEs can learn non-linear embeddings for data in a self-supervised manner!

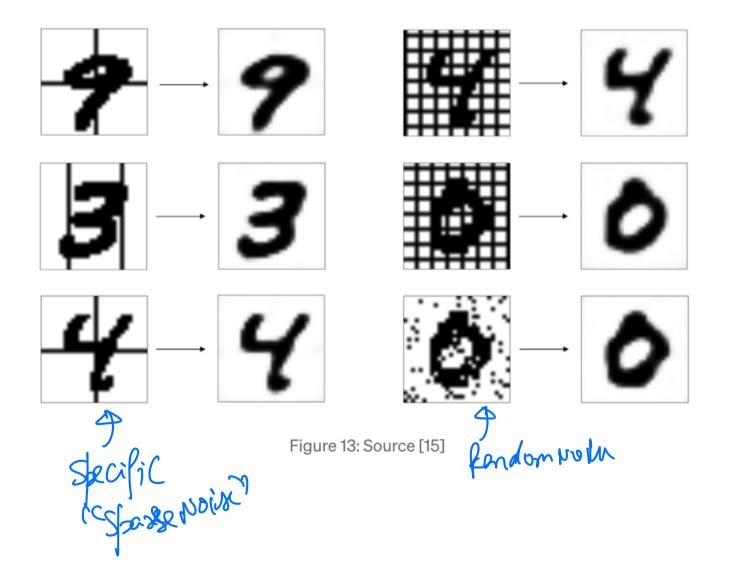
- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- ② Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- AEs can learn non-linear embeddings for data in a self-supervised manner!
- Gan be a starting point to extract concise feature embeddings for a supervised learning model

- Auto-Encoders are a method for dimensionality reduction and can do better than PCA for visualization
- Use Neural Networks architecture and hence can encode non-linearity in the embeddings
- AEs can learn non-linear embeddings for data in a self-supervised manner
- Output: Can be a starting point to extract concise feature embeddings for a supervised learning model
- O Anything else?
- OCAuto Encoders can learn convolutional layers instead of dense layers -Better for images! More flexibility!!

Removing obstacles in images



Removing obstacles in images



Coloring Images

Gray Image	Vanilla Autoencoder	Merge Model (YCbCr)	Merge Model (LAB)	Original
		0 25 50 125 125 126 125 200 0 50 100 150 200	0 25 30 75 125 125 125 125 125 125 125 200 0 50 100 150 200	

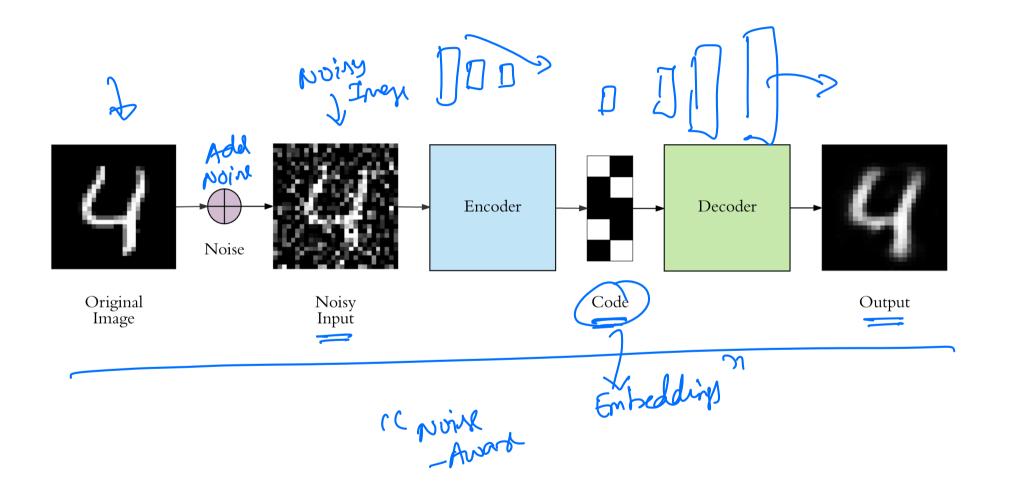
Input: - BALI Image output: - Coloo version of Image

Woots for Certain setting:-Inoger with R.S. Nature init

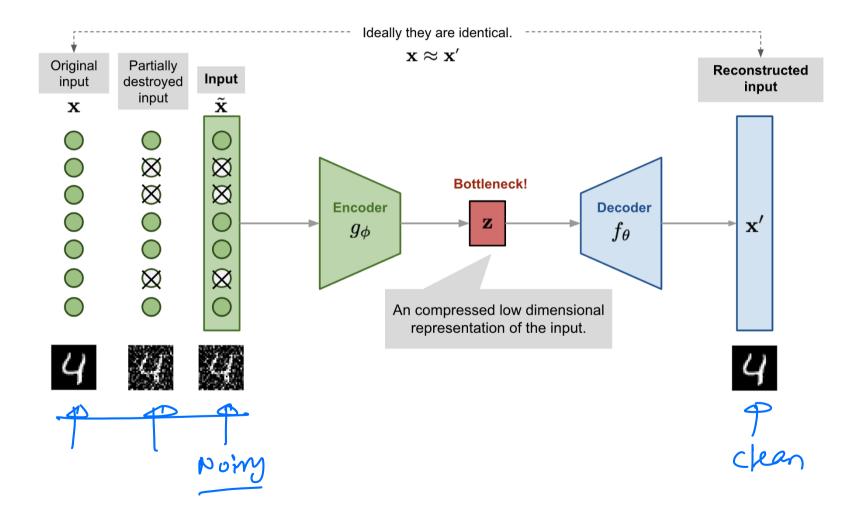
(Univ. of Washington, Seattle)

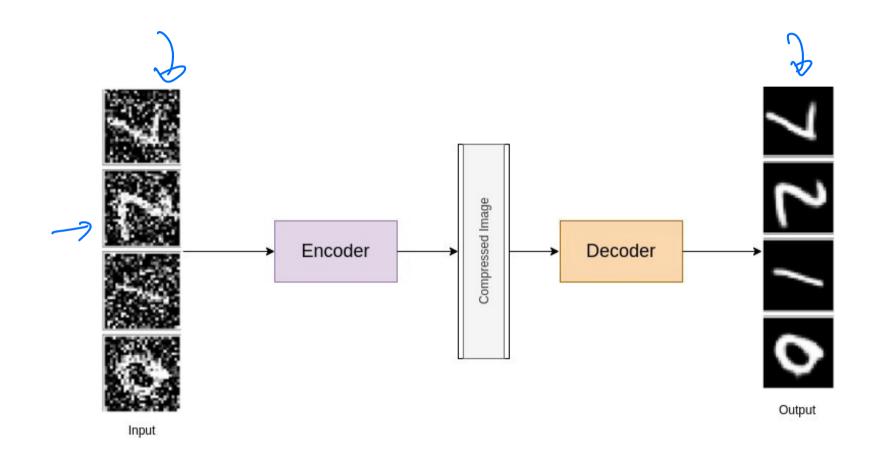
EÉP 596: Adv Intro ML || Lecture 15

De-noising Auto Encoders



De-noising Auto Encoders





Details

• Just like an Auto Encoder

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!

26 / 63

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)

Details

- Just like an Auto Encoder
- Difference: Noise is injected in the inputs on purpose but output is a clean data point.
- This forces the Auto Encoder to "de-noise" data, esp. useful for images!
- Esp. useful for a category of objects or images (e.g. digit recognition or face recognition, etc)
- De-noising AEs can be used to learn noise-aware embeddings -Helps with improving robustness of downstream models

Unsupervised Learning

Which of these is NOT an example of unsupervised learning?

- Perceptron
- 2 Auto Encoder
- Oe-noising Auto Encoder
- 4 K-means++
- Sone of the above
- All of the above

AutoEncoder Tensorflow Tutorial

AutoEncoder TensorFlow Tutorial

5 mins

Discuss in your groups what are some real-world applications of any or many of the Auto Encoder Architectures we discussed so far you can think of in your area of work or in a standard context e.g. images.

Example

I love this car! Positive Sentiment

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

30 / 63

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

Example

I don't think its a bad car at all! \rightarrow Positive Sentiment

Example

I love this car! Positive Sentiment

Example

I am not sure I love this car! Negative Sentiment

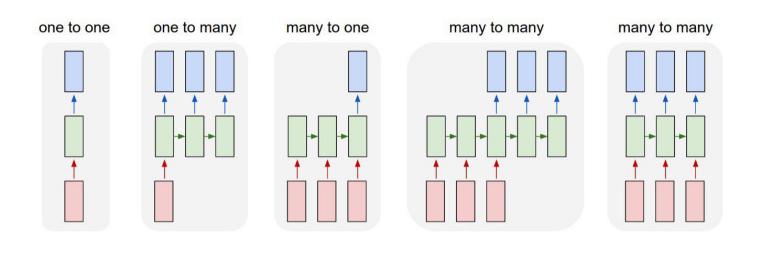
Example

I don't think its a bad car at all! \rightarrow Positive Sentiment

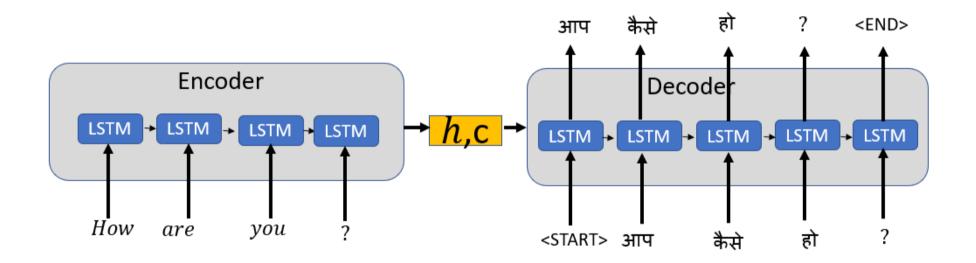
Example

Have to carry the **context(state)** from some-time back to fully understand what's happening!

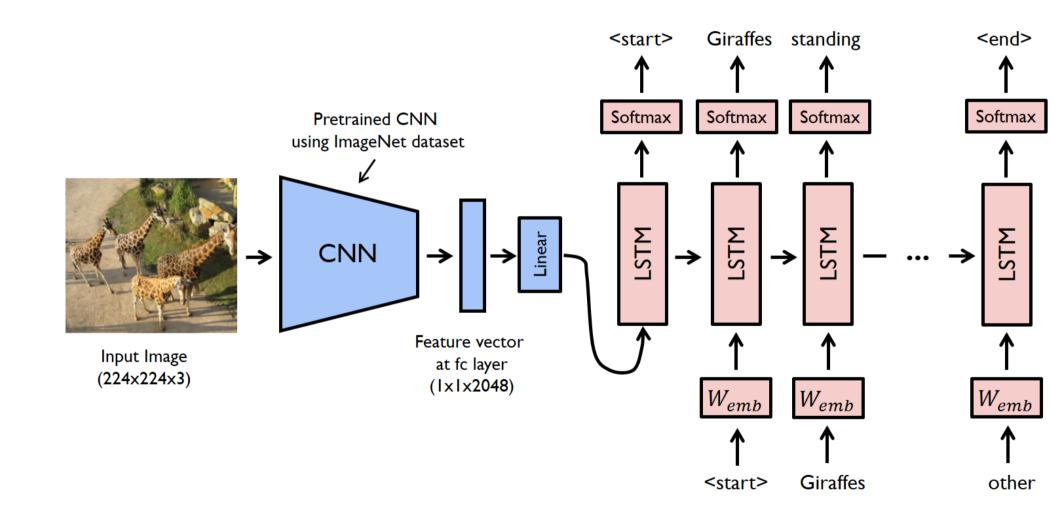
Sequence to Sequence Model (LSTM) Applications



Sequence to Sequence Model (LSTM) Applications



Sequence to Sequence Model (LSTM) Applications



(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 15

February 23, 2023

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion application, which can help complete partial sentences into full sentences through suggestions (auto-complete). How would you use what we have learned so far to model this? What architecture would you use? What would be your data? And what are some pitfalls or painpoints your model should address?

Applications

1 Topic Modeling

Applications

- Topic Modeling
- Machine Translation/Language Translation

Applications

- Topic Modeling
- Machine Translation/Language Translation
- Sentiment Analysis

Applications

- Topic Modeling
- Machine Translation/Language Translation
- Sentiment Analysis
- Chat bots

35 / 63

Applications

- Topic Modeling
- Machine Translation/Language Translation
- Sentiment Analysis
- Chat bots
- Ocument Summarization

35 / 63

Applications

- Topic Modeling
- Machine Translation/Language Translation
- Sentiment Analysis
- Chat bots
- Ocument Summarization
- Many more!

Extra Slides

36 / 63

Topic Modeling

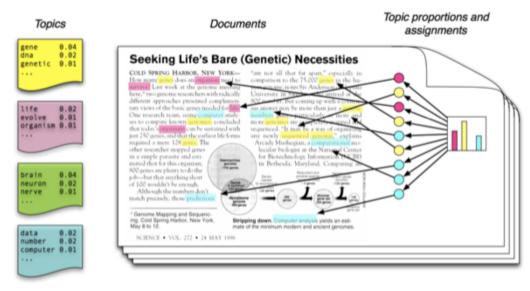


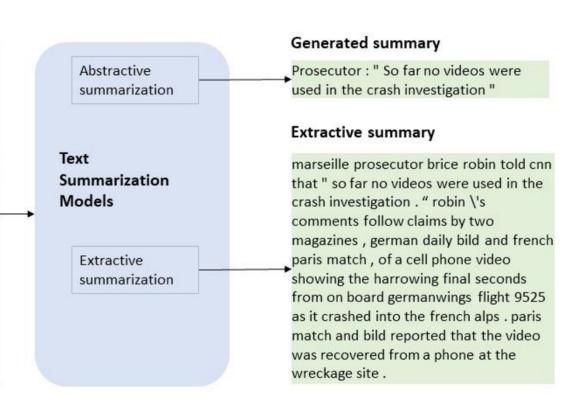
Figure source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

February 23, 2023

Document Summarization

Input Article

Marseille, France (CNN) The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane. Marseille prosecutor Brice Robin told CNN that " so far no videos were used in the crash investigation . " He added, " A person who has such a video needs to immediately give it to the investigators . " Robin\'s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French Alps . All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at the wreckage site. ...



Document Summarization — Extractive

ROUGE score: Recall-Oriented Understudy for Gisting Evaluation
 ROUGE-N: N-gram overlap between two summaries

40 / 63

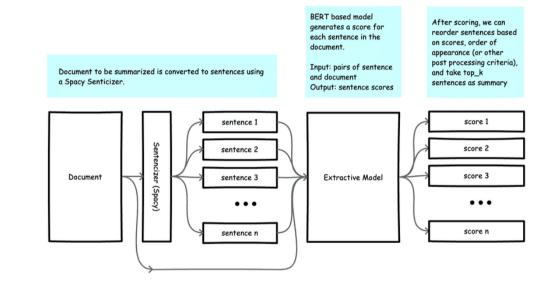
ROUGE-1

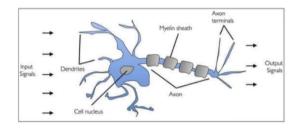
Consider the truth summary and an automated summary of an article from International Geographic! Find the ROUGE-N score based on finding the proportion of N-grams in the truth summary that are also in the automated summary for N = 1.

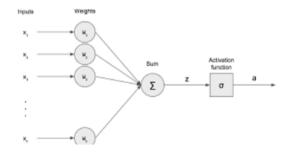
Truth Summary: A symbiotic relationship exists between these two species. The cows feed on wild grass and the egrets feed on the tics found on the surface of the cows.

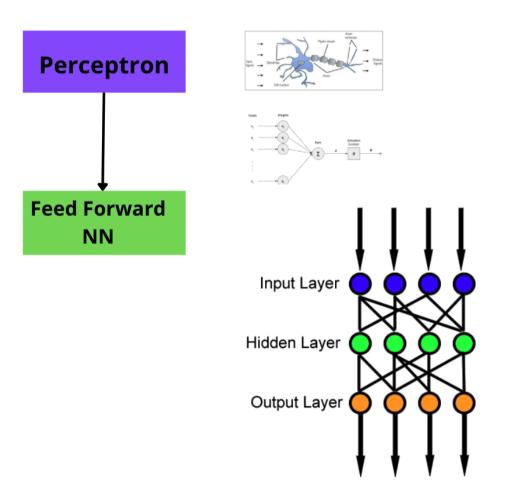
Automated Summary: These two species have a symbiotic relationship. ROUGE-1 =a) 0.33 b) 0.4 c) 0.2 d) 0.25

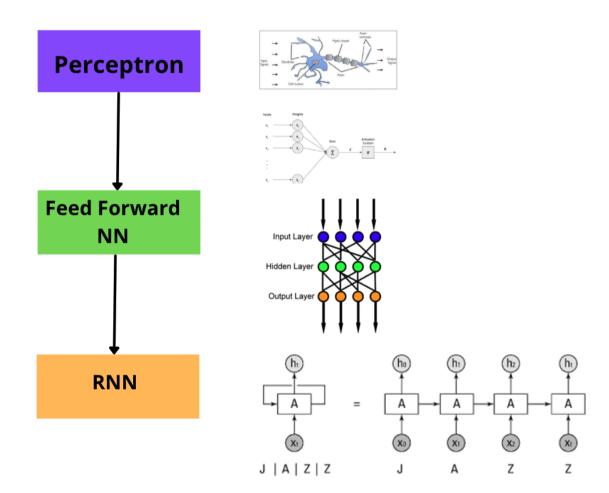
Document Summarization

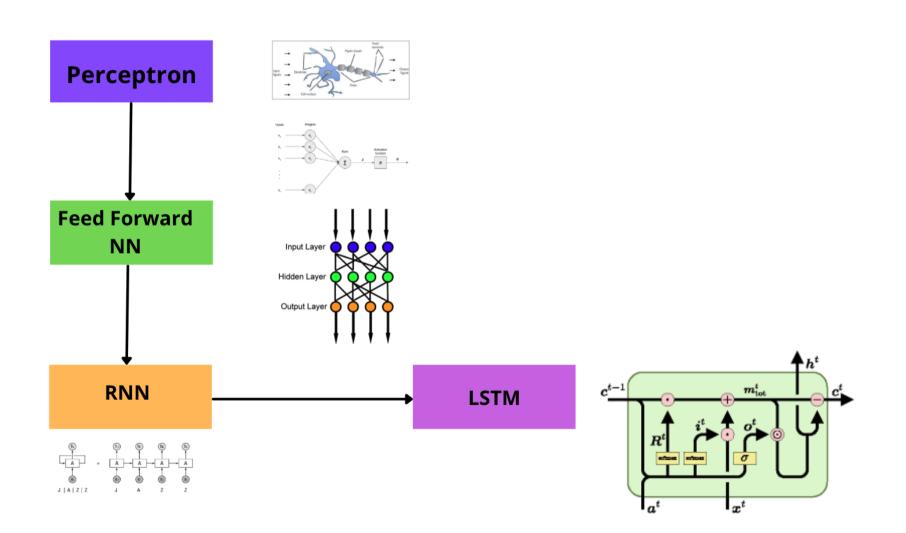




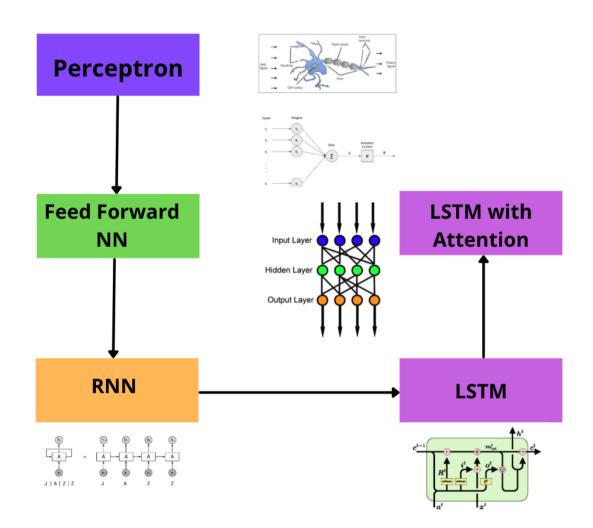


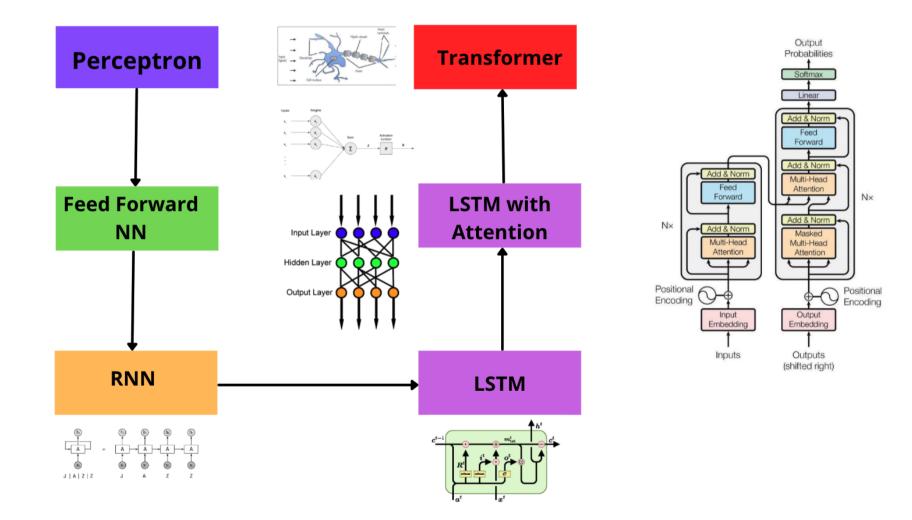


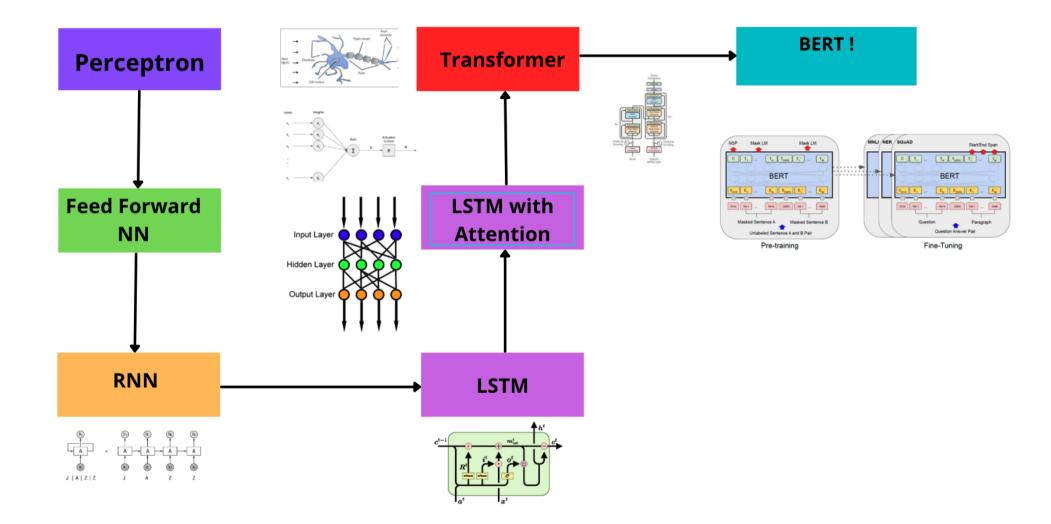


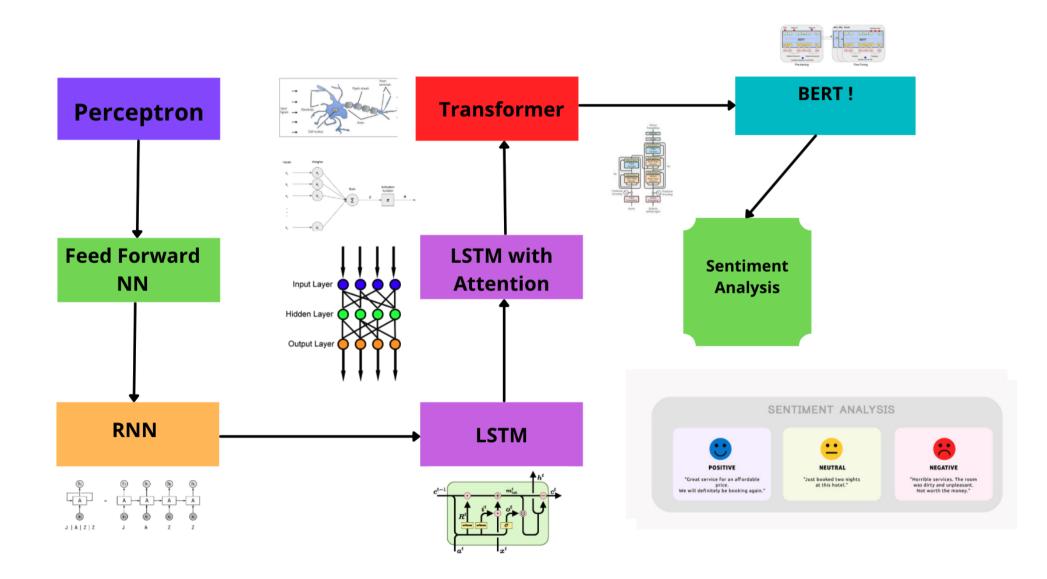


EEP 596: Adv Intro ML || Lecture 15





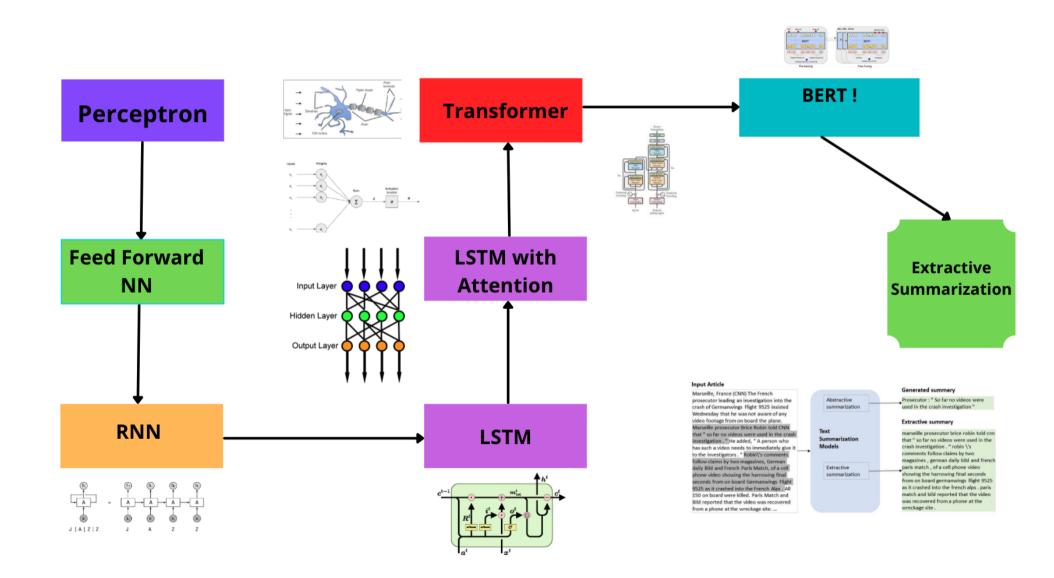




(Univ. of Washington, Seattle)

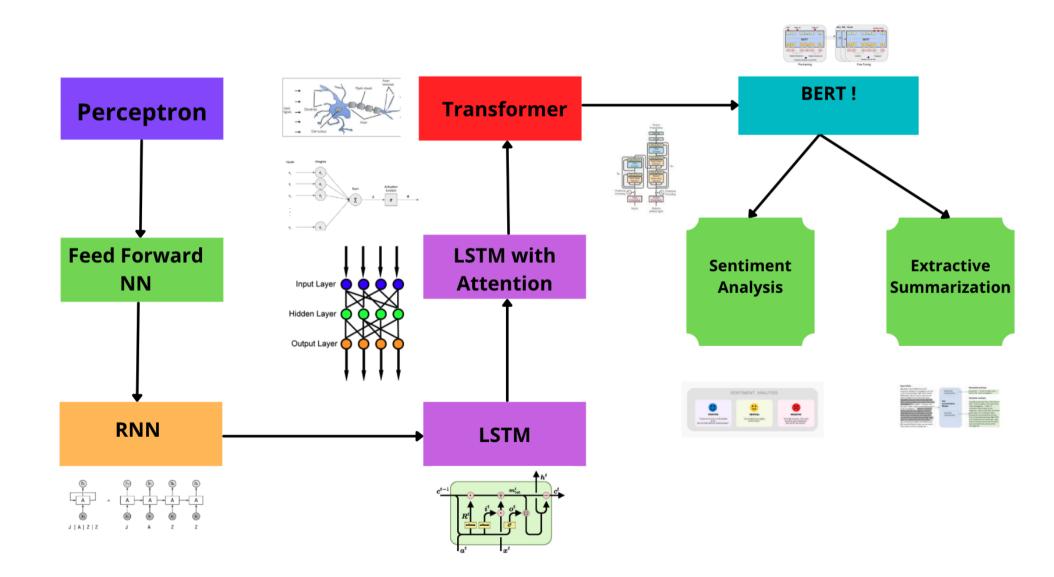
EEP 596: Adv Intro ML || Lecture 15

February



EEP 596: Adv Intro ML || Lecture 15

February 23, 2023

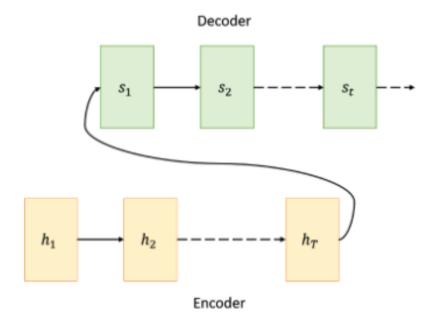


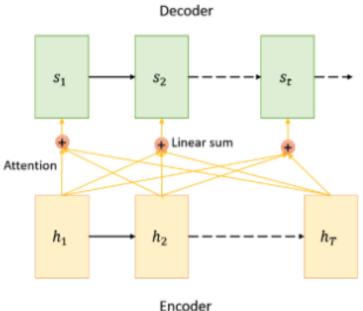
RNN vs LSTM

Which of the following statements are NOT true?

- LSTM doesn't have the exploding/vanishing gradients issue as it occurs in RNNs
- ISTM applies to sequential language tasks while RNNs applies to non-sequential language tasks
- STM is better than RNN in most language tasks
- LSTMs can be used for machine translation tasks

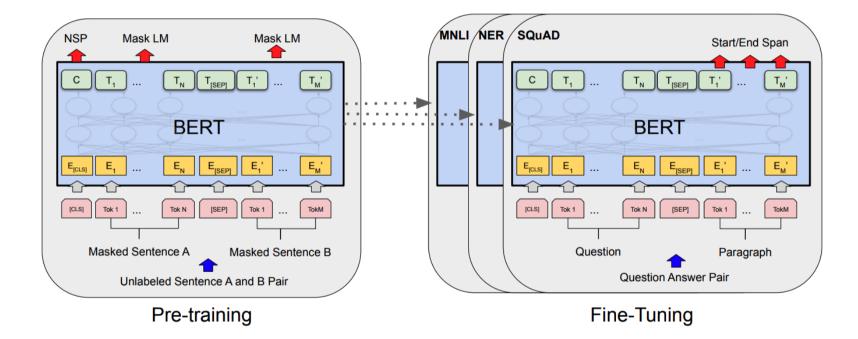
LSTM with attention



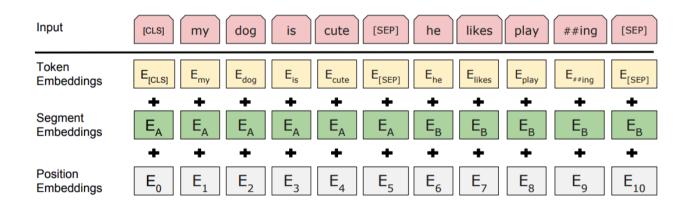


(b) Attention Mechanism

BERT - Bi-directional Encoders from Transformers



BERT Embeddings



BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Next-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

57 / 63

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Output: Next-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

ICE #4: Supervised or Un-supervised?

Are the above two tasks supervised or un-supervised?

BERT pre-training

Two Tasks

- Masked LM Model: Mask a word in the middle of a sentence and have BERT predict the masked word
- Output: Next-sentence prediction: Predict the next sentence Use both positive and negative labels. How are these generated?

ICE #4: Supervised or Un-supervised?

Are the above two tasks supervised or un-supervised?

Data set!

English Wikipedia and book corpus documents!

BERT - Bi-directional Encoders from Transformers

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

BERT - Bi-directional Encoders from Transformers

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
OpenAI GPT	-	78.0
BERT _{BASE}	81.6	-
BERTLARGE	86.6	86.3
BERT _{LARGE} Human (expert) [†]	86.6	86.3 85.0

Table 4: SWAG Dev and Test accuracies. [†]Human performance is measured with 100 samples, as reported in the SWAG paper.

MLM

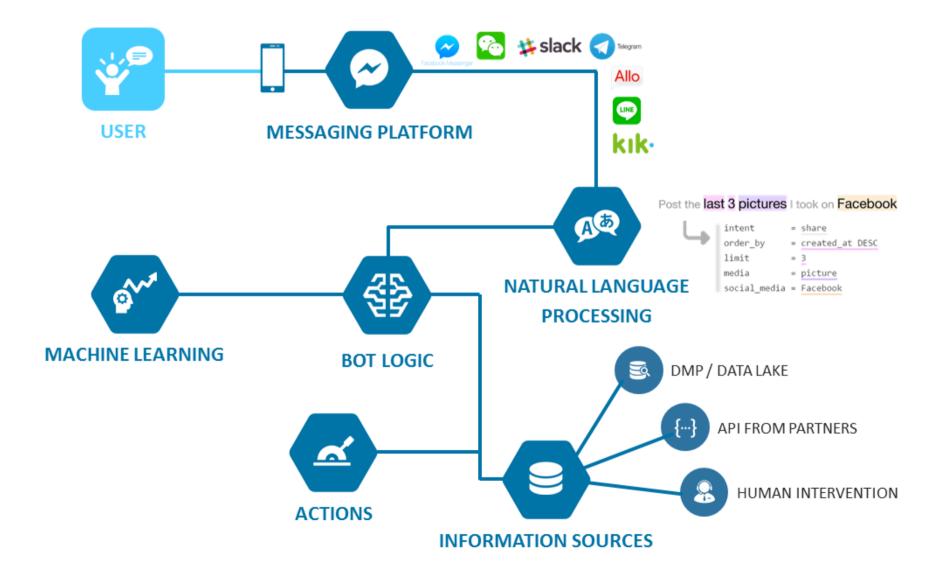
What's the real point of using masked language models (MLM) as compared to regular language models (LM). Select ones that apply!

- MLMs are used to learn how words fit together in a sentence
- MLMs incorporate context from both directions and hence lead to better embeddings and predictions as compared to LMs
- MLMs are great for complicated language tasks such as QA where you need to understand the sentence as a whole to give an appropriate answer to a question

Auto-complete — 5 mins

Let's say you are tasked with building an in-email auto-completion application, which can help complete partial sentences into full sentences through suggestions (auto-complete). How would you use what we have learned so far to model this? What architecture would you use? What would be your data? And what are some pitfalls or pain-points your model should address?

Chat Bots



Retrieving Tables with Chat bots — 7 mins

You are building a chat-bot product at your company where queries come in from customers that own data in your company's cloud service. Your chat-bot responds retrieves the right table or combination of tables (through merge/filter operations) that contains this information or returns back with follow up questions to get more precise information or get back with a "Sorry, I don't have that information" response. How would you go about building a chat-bot like this? What data would you use? What ML models would you use, would it be supervised or un-supervised learning? What would be your evaluation metric? How would you test if your chat bot is accurate in its responses?