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Evolution of DNN architectures for NLP!
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Evolution of DNN architectures for NLP!
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Marseille, France (CNN) The French
prosecutor leading an investigation into the
crash of Germanwings Fiight 9525 insisted
Wednesday that he was not aware of any
video footage from on board the plane.
Marseille prosecutor Brice Robin told CNN

that " 50 far no videos were used in the crash

«"He added, " A person who

has such a video needs to immediately give it

10 the investigators . " Robin\l's comments
follow claims by two magazines, German
daily Bild and French Paris Match, of a cell
phone video showing the harrowing final
seconds from on board Germanwings Flight
9525 as it crashed into the French Alps . All
150 on board were killed. Paris Match and
Bild reported that the video was recovered
from a phone at the wreckage site. ...

Extractive
Summarization

Generated summary
Abstractive __ Prosecutor : * 5o far no videos were
summarization ‘used in the crash investigation *

Extractive summary

Text marseille prosecutor brice robin told cnn
Summarization that " 5o far no videos were used in the
Models crash investigation . “ robin \'s

—

comments follow claims by two
magatines , german daily bild and french

Extractive _ paris match, of a cell phone video

summarization showing the harrowing final seconds
from on board germanwings flight 9525
a5 it crashed into the french alps . paris
match and bild reported that the video
‘was recovered from a phone at the
wreckage site .
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ransformers Architecture

Transformer
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https://arxiv.org/abs/1706.03762
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First Attention Models

Reference paper
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S
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?
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© Next-sentence prediction: Predict the next sentence - Use both
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ICE: Supervised or Un-supervised? \@%—M J

© Are the above two tasks supervised or un-supervised?
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S
BERT pre-training

Two Tasks

@ Masked LM Model: Mask a word in the middle of a sentence and
have BERT predict the masked word

© Next-sentence prediction: Predict the next sentence - Use both
positive and negative labels. How are these generated?

|CE: Supervised or Un-supervised? J

© Are the above two tasks supervised or un-supervised?

Data set!
e
English Wikipedia and book corpus documents! J
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BERT - Bi-directional Encoders from Transformers

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 860  61.7 74.0
BiLSTM+ELMo+Attn  76.4/76.1 648  79.8 90.4 36.0 73.3 849 5638 71.0
OpenAl GPT 82.1/81.4 703 874 913 45.4 80.0 823 560 75.1
BERTgAsE 84.6/83.4 712 905 93.5 52.1 85.8 889  66.4 79.6
BERTy ARGE 86.7/85.9 721 927 949 60.5 86.5 893  70.1 82.1
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Document Summarization — BER

Model

Document to be summarized is converted to sentences using

a Spacy Senticizer.

BERT based model
generates a score for
each sentence in the
document.

Input: pairs of sentence
and document
Output: sentence scores

Based Extractive

After scoring, we can
reorder sentences based
on scores, order of
appearance (or other
post processing criteria),
and take top_k
sentences as summary

Extractive Model
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Question Answering — BERT Based Extractive Model
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BERT, BART and GP
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archs and tasks
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= T
(a) BERT: Random tokens ith masks, and (b) GPT: Tokens are predicted auto-regressively, meaning
the document is encoded bidirectionally. Missing tokens GPT<Tan be used fo aton. ever words can only

are predicted independently, so BERT cannot easily be
used for generation.

En O RS

Encoder
NS

ED

({) BAR]: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with

condition on leftward context, so it cannot learn bidirec-
tional interactions.

ABCDE
L4 f44

Bidirectional I:> Autoregressive

Decoder De%"(

FFrft
<ss>SABCD

a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

BART Paper
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https://arxiv.org/pdf/1910.13461.pdf
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Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

BART Paper
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(a) To use BART for classification problems, the same (b) For machine translation, we learn a small additional
input is fed into the encoder and decoder, and the repre- encoder that replaces the word embeddings in BART The
sentation from the final output is used. “mew encoder can use a disjoint vocabulary.

Pre-trained
er

Randomly
Initialized Encoder

Figure 3: Fine tuning BART for classification and translation.

BART Paper
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Auto-complete — 5 mins —

Let’'s say you are tasked with building an in-email auto-completion
application, which can help complete partial sentences into full sentences
through suggestions (auto-complete). Auto-complete is also called type
ahead for query completion in the context of search. What's a traditional
non-Machine learning way of doing auto-complete/query completion? How
would you use what we have learned so far to use ML to model this?
What architecture would you use? What would be your data? And what

are some pitfalls or pain-points your model should address?

Con Yrun @’*‘“a%’“&e ——

—_— —
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ransformers Demo on Paraphrasing Task

© Pre-Training: We don't do pre-training as that's expensive, requires
lots of compute over many days, models have already been optimized
and leaves a huge carbon footprint.

(Univ. of Washington, Seattle)
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ransformers Demo on Paraphrasing Task

© Pre-Training: We don't do pre-training as that's expensive, requires
lots of compute over many days, models have already been optimized
and leaves a huge carbon footprint.

@ Fine-Tuning: But we can leverage pre-training so we don't have to

build a model that understands language from sractch. For instance
BERT or ALBERT will do it for us. But needs to be fine-tuned to get

good performance on our task of interest.
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ransformers Demo on Paraphrasing Task

© Pre-Training: We don't do pre-training as that's expensive, requires
lots of compute over many days, models have already been optimized
and leaves a huge carbon footprint.

© Fine-Tuning: But we can leverage pre-training so we don't have to
build a model that understands language from sractch. For instance
BERT or ALBERT will do it for us. But needs to be fine-tuned to get

good performance on our task of interest.

© Notebook Demo: Let's take a look at how fine-tuning can be done
using Hugging Face Libraries.

(Univ. of Washington, Seattle)
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Chat Bots
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Breakouts Time #2

Retrieving Tables with Chat bots — 7 mins

You are building a chat-bot product at your company where queries come
in from customers that own data in your company’s cloud service. Your
chat-bot responds retrieves the right table or combination of tables
(through merge/filter operations) that contains this information or returns
back with follow up questions to get more precise information or get back
with a “Sorry, | don't have that information” response. How would you go
about building a chat-bot like this? What data would you use? What ML
models would you use, would it be supervised or un-supervised learning?
What would be your evaluation metric? How would you test if your chat

bot is accurate in its responses?
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e
Additional Slides
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Attention Motivation
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ransformers Architecture

Transformer

Reference: Attention is all you need!
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https://arxiv.org/abs/1706.03762

Transformer

Reference: Attention is all you need!
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Figure 1: The Transformer - model architecture.

ransformers Architecture
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Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 17 March 2, 2023 34 /45


https://arxiv.org/abs/1706.03762

Retrieving Tables from queries

Context

Many a times, we have a Natural Language Query - E.g. "Which quarter
in the past 5 years had the most amount of sales for fashion products”.
From this natural language query, we want to retrieve a data table that is
perhaps the most similar to the query and helps answer the query.

(Univ. of Washington, Seattle)
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Retrieving Tables from queries

Context

Many a times, we have a Natural Language Query - E.g. "Which quarter
in the past 5 years had the most amount of sales for fashion products”.
From this natural language query, we want to retrieve a data table that is
perhaps the most similar to the query and helps answer the query.

y
SQL queries vs Natural Language queries
3 [=ISELECT *
4 FROM dbo.Users u
5 WHERE Location = N'Boise, ID'
6 ORDER BY DisplayName;
200 %
[ Resuts [ Messages 8 Ees
Query 1: Query cost (re
SELECT * FROM [dbo]. [Us:
Missing I: (Impact 9
... I
46 (423%
y
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able2Vec

Region Release Date Label Release Format
United Kingdom 22 September 2008 Super Records DVD
Ireland pgTitle: Radio:Active pords bVD
secondTitle: Release history
Japan caption: Release history fax DVD
Argentina I8 VIay 2009 %Ml Music Digital Download
Singapore 12 June 2009 Warner Music DVD
Spain 1 December 2009 EMI Music Spain Digital Download

(Univ. of Washington, Seattle)
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e
able2Vec

Embedding a Table?
© Identify key entities in a table - E.g. headers and key words

© Approach 1: Take a weighted average of these entity embeddings and
call it the Table embedding

© Approach 2: Pass the key entities in the table through a sequence
model and generate a Table embedding.

@ Other approaches?

EEP 596: Adv Intro ML || Lecture 17 March 2, 2023 37 /45

(Univ. of Washington, Seattle)




I
Query to a Table

Given a Natural Language query, how could you fuzzy match tables to a
query?

@ Get a query embedding

(Univ. of Washington, Seattle)
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I
Query to a Table

Given a Natural Language query, how could you fuzzy match tables to a
query?

@ Get a query embedding
@ Get a table embedding

(Univ. of Washington, Seattle)
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I
Query to a Table

Given a Natural Language query, how could you fuzzy match tables to a
query?

@ Get a query embedding
@ Get a table embedding

© Use an appropriate metric to do the matching!

(Univ. of Washington, Seattle)
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ICE +#5

What similarity metric would be appropriate to match a query with a
table, given embeddings for both that are constructed out of word/entity
embeddings?

© Jaccard Similarity
@ Ranking Similarity
© Cosine Similarity
@ Sentence Similarity

(Univ. of Washington, Seattle)
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I
ICE 46

Let's say we want to automatically convert a Natural Language Query
to a SQL query. E.g. “Which quarter in the past 5 years had the most
amount of sales for fashion products” to “SELECT ... FROM ... WHERE
... What kind of deep learning architecture would support this problem?

@ Siamese Network
Q@ LSTM to LSTM sequence model
© BERT model

@ Feed Forward Neural Network

(Univ. of Washington, Seattle)
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Chat Bots
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|dentifying bad actors from social media messages

Context

When messages on social media can spew hate or be inappropriate - Can a
model be learned to classify them as inappropriate? E.g.

@ You are f**** annoying me right now."

(Univ. of Washington, Seattle)
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|dentifying bad actors from social media messages

Context

When messages on social media can spew hate or be inappropriate - Can a
model be learned to classify them as inappropriate? E.g.

@ You are f**** annoying me right now."

@ “If you don't follow up on what we discussed, then things may not
look so good for you.”

(Univ. of Washington, Seattle)
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I
Breakouts Time #3

Identifying inappropriate speech (7 mins)

Think of a simple baseline model that can help you identify a
message/sentence on social media as inappropriate. When would this
baseline model work? When would it fail? What deep learning architecture
can help you fix the baseline model? What data would you use for your
model? How would you gather the data for training? What do the inputs
and labels look like? What are some evaluation metrics that can be used
to measure the success of your models?
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e
Extra Slides

(Univ. of Washington, Seattle)
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Breakouts Time 1

5 mins

Discuss in your groups what are some real-world applications of any or
many of the Auto Encoder Architectures we discussed so far you can think
of in your area of work or in a standard context e.g. images.

(Univ. of Washington, Seattle)
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