EEP 596: Adv Intro ML || Lecture 2

Univ. of Washington, Seattle

Jan 6, 2022

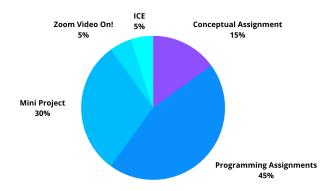
Logistics

- **Lecture** Tuesday Lecture: Expectation that you join in person. Thursday Lecture: Zoom (zoom attendance will be taken).
- Assignment Programming Assignment 1 to be assigned Due next Thursday, January 12th, midnight
- Office Hours Karthik: 6 6:30 pm on Thursday, Ayush TBD
- Calendly slots Feel free to pick calendly slots for 1:1 15 min syncs as needed (recommended)
- Course Webpage https://bytesizeml.github.io/ml2023/

Weekly Schedule

	Day	Timings	Class type
Lecture 1 (In-person)	Т	4 pm - 6 pm	In-person
Lecture 2	Th	4 pm - 6 pm	Zoom
Office Hours Karthik	Th	6 - 6:30 pm	Zoom
Office Hours Ayush	TBD	TBD	Zoom
Quiz Section Ayush	TBD	TBD	Zoom
Grading hours	TBD	TBD	Zoom

Assessments Breakdown



Lecture Structure

Format for each lecture

- Sprinkle in a few In-class exercises MCQ for conceptual understanding
- Where required Will set extra context on applications/background -This may be slow for some but super useful for rest of class - Let's adjust and adapt!
- Break at 1 hour mark
- Break-outs in between/end of class for peer discussion + networking
- Anything else ?

Class goes at the average pace!

Quick pointers

- We will cater the lecture to discuss fundamentals and go at a pace comfortable with the average of the class
- If the class/topic is going too fast for you There maybe brushing up of background (e.g. linear algebra/calculus/programming) that you may have to do in your own time!
- If a topic is going slow Opportunity to dive deeper into the topic through additional reading of papers or programming
- Be sure to brush up/catch up on your python and linear algebra to gear up for upcoming lectures and assignments

Lectures and Programming Assignments (Tentatively)

Week	Lecture Material	Assignment
1	Linear Regression	Housing Price Prediction
2	Classification	Spam classification (Kaggle)
3	Classification	Flower/Leaf classification
4	Clustering	MNIST digits clustering
5	Anomaly Detection	Crypto Prediction (Kaggle + P)
6	Data Visualization	Crypto Prediction (Kaggle + P)
7	Deep Learning	Visualizing 1000 images
8	Deep Learning (DL)	ECG Arrythmia Detection
9	DL in NLP	TwitterSentiment Analysis (Kaggle $+$ P)
10	DLs in Vision	TwitterSentiment Analysis (Kaggle $+$ P)

Coding pointers

- Assignments assume python as the main language (e.g. for hints and modules, etc)
- Coding environment set-up will be one of the problems on HW 1
- Prototyping can be done on notebooks and submitted as such for smaller assignments.
- For mini-projects and kaggle assignments Please keep your code modular and organized.

Coding Environment

- Pointers below if you want to get set up on Google Colab for both prototyping, running machine-intensive ML experiments and working with code through IDEs
- Prototype Coding work in Notebooks recommended on Google Colab
- For terminal access on Google Colab, sign up for pro
- pip3 install colabcode on termainal
- ColabCode enables you to have a VSCode IDE port into Google Colab
 - So you can work on the IDE from your laptop but run experiments on Google Colab!

• Ask questions during lectures - Clarify things as they happen!

- Ask questions during lectures Clarify things as they happen!
- Make use of office hours and quiz section!

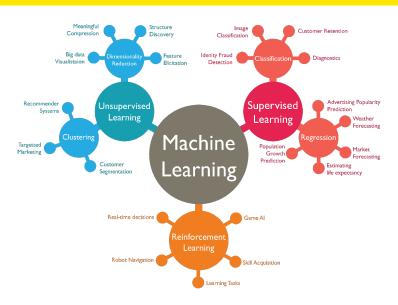
- Ask questions during lectures Clarify things as they happen!
- Make use of office hours and quiz section!
- Collaborative learning Discord is a great place to brainstorm concepts outside class and unblock yourself.

- Ask questions during lectures Clarify things as they happen!
- Make use of office hours and quiz section!
- Collaborative learning Discord is a great place to brainstorm concepts outside class and unblock yourself.
- 30% of your learning happens in class and office hours The remaining 70% happen when you work on the assignments. (You ofcourse need the 30 to get to the 70:D)

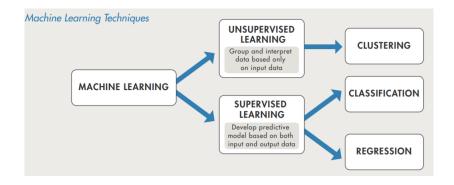
- Ask questions during lectures Clarify things as they happen!
- Make use of office hours and quiz section!
- Collaborative learning Discord is a great place to brainstorm concepts outside class and unblock yourself.
- 30% of your learning happens in class and office hours The remaining 70% happen when you work on the assignments. (You ofcourse need the 30 to get to the 70:D)
- What you put in is what you get out!

- Ask questions during lectures Clarify things as they happen!
- Make use of office hours and quiz section!
- Collaborative learning Discord is a great place to brainstorm concepts outside class and unblock yourself.
- 30% of your learning happens in class and office hours The remaining 70% happen when you work on the assignments. (You ofcourse need the 30 to get to the 70:D)
- What you put in is what you get out!
- Excitement + Smart work + Inquisitiveness = Maximized learning!

What is Machine Learning?



Supervised vs Unsupervised Learning



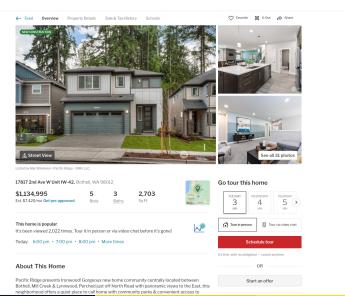
Supervised Learning

Un-Supervised Learning

Our first ML method: Linear Regression

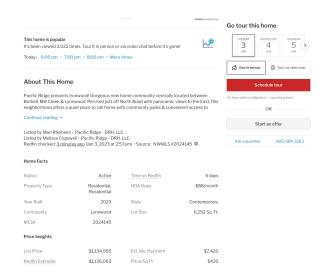
Application: Housing Prices

Redfin



17 / 50

Redfin Estimate



Zoom Breakout #1

Zillow Estimate/RedFin Estimate

If you are on the market to buy a house, you would perhaps be looking at "Zestimates" or "RedFin Estimates" to filter out houses in your budget range. Discuss in your group, what are the factors that influence the price of a home and what are the factors (also called features in ML) that may have been used to construct these estimates. Once you have a set of factors identified, how do you combine them to produce the final house price estimate?

Typical Housing Data, Seattle

Index	SqFt	#Rooms	# Bathrooms	Location	Selling Price
1	2500	4	3	Bothell	1 MM
2	2000	3	2	Bellevue	950k
3	3000	4	3	Sammamish	1.3 MM
4	3000	4	3	Issaquah High	1.6 MM
5					

Typical Housing Data, Seattle

Index	SqFt	#Rooms	# Bathrooms	Location	Selling Price
1	2500	4	3	Bothell	1 MM
2	2000	3	2	Bellevue	950k
3	3000	4	3	Sammamish	1.3 MM
4	3000	4	3	Issaquah High	1.6 MM
5					

Other attributes for housing price prediction

Other attributes that matter?

Categorical

Attributes that fall into a clear set of categories. Example: zipcode of a place

Categorical

Attributes that fall into a clear set of categories. Example: zipcode of a place

Numerical

Attributes that fall in a numeric range. Example: weight or height of a person

Categorical

Attributes that fall into a clear set of categories. Example: zipcode of a place

Numerical

Attributes that fall in a numeric range. Example: weight or height of a person

Modeling Choice

Sometimes, whether an attribute is categorical or numerical is a modeling choice!

Categorical or Numerical??

Index	SqFt	#Rooms	# Bathrooms	Location	Selling Price
1	2500	4	3	Bothell	1 MM
2	2000	3	2	Bellevue	950k
3	3000	4	3	Sammamish	1.3 MM
4	3000	4	3	Issaquah High	1.6 MM
5					

Matrices and Vectors

Data matrix X

Let's say in our Housing database, we have 1000 houses and 30 attributes. If we wanted to represent this as a data matrix, X, what would be the dimensions of such a matrix?

Matrices and Vectors

Data matrix X

Let's say in our Housing database, we have 1000 houses and 30 attributes. If we wanted to represent this as a data matrix, X, what would be the dimensions of such a matrix?

Price vector y

For the same example as before, we take the housing prices of all the homes and put them into a price vector y. What would be the dimension of this vector y?

X and y in housing data

Index	SqFt	#Rooms	# Bathrooms	Location	Selling Price
1	2500	4	3	Bothell	1 MM
2	2000	3	2	Bellevue	950k
3	3000	4	3	Sammamish	1.3 MM
4	3000	4	3	Issaquah High	1.6 MM
5					

Linear Model

Linear Model

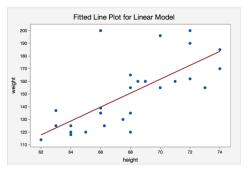
In Linear models, we assume that the target, y is a linear combination of the attributes or features x. This is a 'modeling assumption'. The combination is represented by a weight vector w.

Linear Model

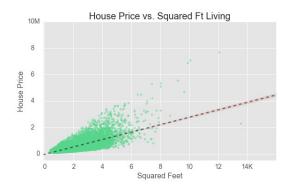
Linear Model

In Linear models, we assume that the target, y is a linear combination of the attributes or features x. This is a 'modeling assumption'. The combination is represented by a weight vector w.

Visualizing Linear Model



Linear Model for Housing Prices Application



In Linear models, we assume that the target, y is a linear combination of the attributes or features x. The combination is represented by a weight vector w.

In Linear models, we assume that the target, y is a linear combination of the attributes or features x. The combination is represented by a weight vector w.

In the housing price example

$$y = w_0 + w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + w_4 \times x_4$$

In Linear models, we assume that the target, y is a linear combination of the attributes or features x. The combination is represented by a weight vector w.

In the housing price example

$$y = w_0 + w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + w_4 \times x_4$$

In the housing price example

$$1MM = w_0 + w_1 \times 2500 + w_2 \times 4 + w_3 \times 3 + w_4 \times Bothell$$

In Linear models, we assume that the target, y is a linear combination of the attributes or features x. The combination is represented by a weight vector w.

In the housing price example

$$y = w_0 + w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + w_4 \times x_4$$

In the housing price example

$$1MM = w_0 + w_1 \times 2500 + w_2 \times 4 + w_3 \times 3 + w_4 \times Bothell$$

There's one problem though!

How do we multiply a 'location' by a weight ?

Dealing with categorical attributes

One approach: Create new dummy attributes!

*x*_{Bothell}, *x*_{Bellevue}, *x*_{Sammamish}, *x*_{IssaquahHigh} - One dummy variable for each location that takes a value 1 if its the true location and 0 otherwise.

Dealing with categorical attributes

One approach: Create new dummy attributes!

*x*_{Bothell}, *x*_{Bellevue}, *x*_{Sammamish}, *x*_{IssaquahHigh} - One dummy variable for each location that takes a value 1 if its the true location and 0 otherwise.

ICE #1 (2 mins): How many attribues do we have now?

Let's say our data consisted of the following attributes: Square Footage, # Rooms, # Bathrooms, Location. After applying "pre-processing" to the data of introducing dummy attributes, how many total attributes do we have now ? Answer poll pollev.com/karthikmohan088

Modifying the Data Matrix

Where we started: X

Index	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	у	
1	2500	4	3	Bothell	1 MM	

Modifying the Data Matrix

Where we started: X

Index	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	У	
1	2500	4	3	Bothell	1 MM	

After pre-processing for categorical attributes: New X

Index	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	
1							
2							
÷							

Modifying the Data Matrix

Where we started: X

Index	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	у	
1	2500	4	3	Bothell	1 MM	

After pre-processing for categorical attributes: New X

Index	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	
1							
2							
:							

Does vector y change?

Back to the Linear Model

A formula for the house price

Let y_i be the price of the i_{th} home. Let X_{ij} denote the j_{th} attribute of the i_{th} home. Then

$$y_i \sim w_0 + w_1 \times X_{i1} + w_2 \times X_{i2} + w_3 \times X_{i3} + \dots$$

Back to the Linear Model

A formula for the house price

Let y_i be the price of the i_{th} home. Let X_{ij} denote the j_{th} attribute of the i_{th} home. Then

$$y_i \sim w_0 + w_1 \times X_{i1} + w_2 \times X_{i2} + w_3 \times X_{i3} + \dots$$

A succinct expression for the i_{th} house

$$y_i = w^T X_{i,.} = w \cdot X_{i,.}$$

Back to the Linear Model

A formula for the house price

Let y_i be the price of the i_{th} home. Let X_{ij} denote the j_{th} attribute of the i_{th} home. Then

$$y_i \sim w_0 + w_1 \times X_{i1} + w_2 \times X_{i2} + w_3 \times X_{i3} + \dots$$

A succinct expression for the i_{th} house

$$y_i = w^T X_{i,.} = w \cdot X_{i,.}$$

ICE #2 (2 mins): Succinct expression for y in terms of X and w?

Definition

Find the best weights/parameters/coefficients w such that $X_{i,.}^T w$ is as close to y_i as possible!

Definition

Find the best weights/parameters/coefficients w such that $X_{i,.}^T w$ is as close to y_i as possible!

Mathematically

Minimize the following expression:

$$\min_{w} \|Xw - y\|_2^2$$

Definition

Find the best weights/parameters/coefficients w such that $X_{i,.}^T w$ is as close to y_i as possible!

Mathematically

Minimize the following expression:

$$\min_{w} \|Xw - y\|_2^2$$

Estimate or "learned" parameter

Represented usually by \hat{w} and \hat{y} is the "predicted" house price for all the homes.

Definition

Find the best weights/parameters/coefficients w such that $X_{i,.}^T w$ is as close to y_i as possible!

Mathematically

Minimize the following expression:

$$\min_{w} \|Xw - y\|_2^2$$

Estimate or "learned" parameter

Represented usually by \hat{w} and \hat{y} is the "predicted" house price for all the homes.

ICE #3 (1 min)

What's the succinct expression for \hat{y} ?

Line of best fit

Best fit

 \hat{w} defines the line of best fit. $h(x) = \hat{w}^T x$ gives us the line and in higher dimensions, it's called a "hyperplane".

Line of best fit

Best fit

 \hat{w} defines the line of best fit. $h(x) = \hat{w}^T x$ gives us the line and in higher dimensions, it's called a "hyperplane".

Housing price example

Line of best fit

Housing price example

ICE #4 (1 min)

What would you say is the value of the bias, w_0 for the line in the visual above?

Hyperplane in 3 dimensions

Housing price example

3 dim hyperplane

$$\hat{y} = w_0 + w_1 \times x_1 + w_2 \times x_2$$

 x_1 could be square footage and x_2 could be number of bedrooms.

Linear Regression

Closed form!

There is actually a closed form expression for Linear Regression!

$$\min_{w} \|Xw - y\|_2^2$$

 $\hat{w} = (X^T X)^{-1} X^T y!$ (Q: How do we arrive at this?)

Linear Regression

Closed form!

There is actually a closed form expression for Linear Regression!

$$\min_{w} \|Xw - y\|_2^2$$

 $\hat{w} = (X^T X)^{-1} X^T y!$ (Q: How do we arrive at this?)

In practice!

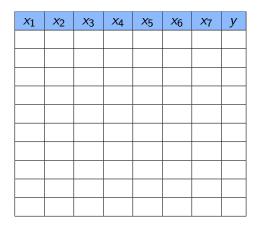
In practice, a linear regression library might revert to doing "gradient descent" on the learning objective. Why do that?

Housing price Example

Pre-processing of data

One is taking care of categorical variables such as location with dummy attributes (also called 'bag of words' model). Anything else we may need to do on the data to get good predictions?

Training the Linear Regression Model



Can we use of all of data for training?

• Why not use all data for training ?

The phenomenon of Overfitting

Overfitting

Overfitting is when your mdoel performs great on training data but doesn't match up on test data. To account for overfitting, we also have a validation data set.

Understanding over-fitting better

When do we expect over-fitting?

When the number of attributes in our model exceeds the size of the data set.

In terms of data matrix X

rows << # columns

• **Training** Learning parameters/weights, i.e. w for Linear Regression is called Training.

- **Training** Learning parameters/weights, i.e. w for Linear Regression is called Training.
- We don't use all data for training Some portion of the data is kept for validation and testing.

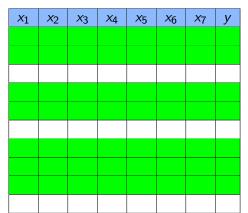
- **Training** Learning parameters/weights, i.e. w for Linear Regression is called Training.
- We don't use all data for training Some portion of the data is kept for validation and testing.
- Data Splits: Usually, 80% of data is kept for training, 10% for validation and 10% for training. The splits are chosen randomly.

- **Training** Learning parameters/weights, i.e. w for Linear Regression is called Training.
- We don't use all data for training Some portion of the data is kept for validation and testing.
- Data Splits: Usually, 80% of data is kept for training, 10% for validation and 10% for training. The splits are chosen randomly.
- Why not use all data for training?

- **Training** Learning parameters/weights, i.e. w for Linear Regression is called Training.
- We don't use all data for training Some portion of the data is kept for validation and testing.
- Data Splits: Usually, 80% of data is kept for training, 10% for validation and 10% for training. The splits are chosen randomly.
- Why not use all data for training ?
- Why not just have train and test data? What's the point of validation data set?

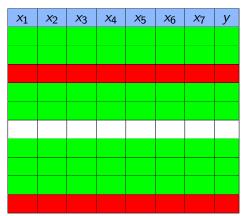
Example: 70:10:20 Train-Val-Test data split

Choose 70% train data at random



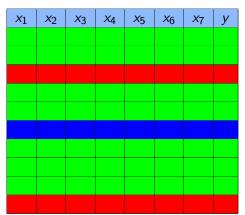
Example: 70:10:20 Train-Val-Test data split

Add 20% test data at random



Example: 70:10:20 Train-Val-Test data split

Remainder becomes validation data



 Pandas library in Python is good for data pre-processing before training your Linear Regression model

- Pandas library in Python is good for data pre-processing before training your Linear Regression model
- Dummy attributes for categorical variables can also be added in through pandas.get_dummies() method.

- Pandas library in Python is good for data pre-processing before training your Linear Regression model
- Dummy attributes for categorical variables can also be added in through pandas.get_dummies() method.
- Use **Scikit-learn** for implementing Linear Regression

- Pandas library in Python is good for data pre-processing before training your Linear Regression model
- Dummy attributes for categorical variables can also be added in through pandas.get_dummies() method.
- Use **Scikit-learn** for implementing Linear Regression
- Should now be ready to tackle both the conceptual and programming Assignment 1!

Summary so far

- Linear Regression finds a line of best fit through the data.
- R^2 measure determines the goodness of fit.
- Usually multiple good attributes are needed for a good prediction and a good fit.
- Data pre-processing. Categorical attributes are handled through creation of dummy attributes and in addition normalizing of the attributes brings all attributes on the same scale for regression.
- We have a closed form/analytical solution for Linear Regression, but for large data sets, gradient descent algorithm (iterative) gets used for scalability reasons.
- We don't use all of a data set for training. A portion of data is kept for validation and testing. This is to prevent over-fitting and also for fair evaluation purposes.
- The data set split is usually 80 10 10 or 70 10 20 (train-val-test).

Summary so far

- Over-fitting happens when we have fewer data points as compared to the number of attributes or features.
- Over-fitting can be taken care off by increasing data-set size, decreasing number of attributes or through regularization strategies

Questions/Thoughts?