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Logistics

@ Lecture Tuesday Lecture: Expectation that you join in person.
Thursday Lecture: Zoom (zoom attendance will be taken).

@ Assignment Programming Assignment 1 to be assigned - Due next
Thursday, January 12th, midnight

NN
e Office Hours Karthik: 6 - 6:30 pm on Thursday, Ayush - TBD

o Calendly slots Feel free to pick calendly slots for 1:1 15 min syncs
as needed (recommended)

@ Course Webpage https://bytesizeml.github.io/ml2023/
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https://calendly.com/event_types/user/me
https://bytesizeml.github.io/ml2023/

Weekly Schedule

Day Timings Class type
Lecture 1 (In-person) T | 4pm-6pm | In-person
Vecture 2 Th | 4 pm-6 pm /oom
Office Hours Karthik Th | 6-6:30 pm /oom
Office Hours Ayush TBD TBD Zoom
Quiz Section Ayush™ | TBD TBD Zoom
Grading hours TBD TBD Zoom

(Univ. of Washington, Seattle)
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Assessments Breakdown

ICE
Zoom Video On! 5% Conceptual Assignment
5% — 15%

7 CMin;z;ojectw
(2 1 e

e
gl -

Programming Assignments
45%
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| ecture Structure

Format for each lecture | CE
@ Sprinkle in a few In-class exercises MCQ for conceptual understanding

@ Where required - Will set extra context on applications/background -

This may be slow for some but super useful for rest of class - Let's
adjust and adapt!

@ Break at 1 hour mark

—_— 0 >

@ Break-outs in between/end of class for peer discussion + networking

e
@ Anything else 7

(Univ. of Washington, Seattle)
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Class goes at the average pacel

e

Quick pointers

@ We will cater the lecture to discuss fundamentals and go at a pace
comfortable with the average of the class

@ If the class/topic is going too fast for you - There maybe brushing up

of background (e.g. linear algebra/calculus/programming) that you
may have to do in your own time!

e If a topic is going slow + Opportunity to dive deeper into the topic
through additional reading of papers or programming

TBe sure to brush up/catch up on your python and linear algebra to

gear up for upcoming lectures and assignments
y
C
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Lectures and Programming Assignments (

entatively)

Lecture Material

Assignment

Linear Regression

Housing Price Prediction

Classification

Spam classification (Kaggle)

Classification

Flower /Leaf classification

Clustering

MNIST digits clustering

Anomaly Detection

Crypto Prediction (Kaggle + P)

Data Visualization

Crypto Prediction (Kaggle + P)

Deep Learning

Visualizing 1000 images

Deep Learning (DL)

ECG Arrythmia Detection

@OO\I@U‘I-&OOI\)I—‘E
D
D
~

DL in NLP

TwitterSentiment Analysis (Kaggle + P)

—
o

DLs in Vision

TwitterSentiment Analysis (Kaggle + P)

(Univ. of Washington, Seattle)
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I
Coding pointers

@ Assignments assume python as the main language (e.g. for hints and
modules, etc)

e Coding environment set-up will be one of the problems on HW 1
@ Prototyping can be done ofi notebooks’and submitted as such for

smaller assighments.

@ For mini-projects and kaggle assignments - Please keep your code
modular and organized.
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Coding Environment

@ Pointers below if you want to get set up on Google Colab for both
prototyping, running machine-intensive ML experiments and working
with code through IDEs

Prototype Coding work in Notebooks recommended on Google Colab

For terminal access on Google Colab, sign up for pro

pip3 install colabcode on termainal

® 6 o6 o

olabCode enables you to have a VSCode IDE port into Google Colab
- So you can work on the IDE from your laptop but run experiments
on Google Colab!
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(null)://(null)colab.research.google.com

Maximizing Your Learning of Machine Learning!

@ Ask questions during lectures - Clarify things as they happen!

—

(Univ. of Washington, Seattle)
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Maximizing Your Learning of Machine Learning!

@ Ask questions during lectures - Clarify things as they happen!

@ Make use of office hours and quiz section!

(Univ. of Washington, Seattle)
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Maximizing Your Learning of Machine Learning!

@ Ask questions during lectures - Clarify things as they happen!
@ Make use of office hours and quiz section!

@ Collaborative learning - Discord is a great place to brainstorm
concepts outside class and unblock yourself.

(Univ. of Washington, Seattle)
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Maximizing Your Learning of Machine Learning!

@ Ask questions during lectures - Clarify things as they happen!
@ Make use of office hours and quiz section!

@ Collaborative learning - Discord is a great place to brainstorm
concepts outside class and unblock yourself.

o/ 30% of your learning happens in class and office hours - The
remaining 70% happen when you work on the assignments. (You
ofcourse need the 30 to get to the 70 :D)

(Univ. of Washington, Seattle)
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Maximizing Your Learning of Machine Learning!

@ Ask questions during lectures - Clarify things as they happen!
@ Make use of office hours and quiz section!

@ Collaborative learning - Discord is a great place to brainstorm
concepts outside class and unblock yourself.

@ 30% of your learning happens in class and office hours - The
remaining 70% happen when you work on the assignments. (You
ofcourse need the 30 to get to the 70 :D)

@ What you put in is what you get out!
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Maximizing Your Learning of Machine Learning!

@ Ask questions during lectures - Clarify things as they happen!
@ Make use of office hours and quiz section!

@ Collaborative learning - Discord is a great place to brainstorm
concepts outside class and unblock yourself.

@ 30% of your learning happens in class and office hours - The
remaining 70% happen when you work on the assignments. (You
ofcourse need the 30 to get to the 70 :D)

@ What you put in is what you get out!

@ Excitement +/Smart work H Inquisitiveness = Maximized learning!
— \__/
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I
What is Machine Learning?

Meaningful
Compression

Structure Image

i T Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud
Visualistaion Reduction Elicitation Detection

<

Classification Diagnostics

~)

. . \/ l .Advertlsm Popularit
Re“’ms”yf:ednf's Unsupervised Supervised Pred,ct,ong PRy
Learning Learn|ng Weather
Forecasting
Clustering * v Regression
Targetted MaChIne FopTtaee
Marketing Growth Market

Forecastin
Prediction g

f

(/7

Game Al

Customer

Segmentation Lea rn i ng

Estimating
life expectancy

eal-time decisions GPT
: e S 7
g(}%, l)e-r einforcement ‘,/

Learning
/ Robot Navigation

Skill Acquisition

Learning Tasks
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Supervised vs Unsupervised Learning

Machine Learning Techniques p

.
UNSUPERVISED
LEARNING ey | CLUSTERING

Group and interpret
data based only
on input data

MACHINE LEARNING CLASSIFICATION

SU_PERVISED
LEARNING

Develop predictive
model based on both
input and output data

\ REGRESSION
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Supervised Learning
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Un-Supervised Learning
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I
Our first ML method: Linear Regression

(Univ. of Washington, Seattle)
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Application: Housing Prices
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e
Redfin

& Feed Overview Property Details Sale & Tax History Schools Q Favorite  $¢ X-Out > Share

RLERTR . Ty

8, Street View m & - - See all 31 photos =
- ; é
Listed by Mari Riksheim - Pacific Ridge - DRH, LLC
17817 2nd Ave W Unit IW-42, Bothell, WA 98012 / Go tour this home
e {
$1,134,995 5 3 2,703 WEDNESDAY | | THURSDAY
ST $7,420™0 Get pre-approved Beds Baths SqFt 4 5 >
— S— JAN
E——
This home is popular {3} Tourinperson Tour via video chat
It's been viewed 2,022 times. Tour it in person or via video chat before it's gone! l'oi

Today: 6:00pm « 7:00pm - 8:00 pm * More times Schedule tour

About This Home OR

Pacific Ridge presents Ironwood! Gorgeous new home community centrally located between Start an offer
Bothell, Mill Creek & Lynnwood. Perched just off North Road with panoramic views to the East, this
neighborhood offers a quiet place to call home with community parks & convenient access to
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e
Redfin Estimate

Go tour this home

This home is popular TUESDAY WEDNESDA JUF
It's been viewed 2,022 times. Tour it in person or via video chat before it's gone! l'&i

Today: 6:00pm + 7:00pm -+ 8:00 pm * More times

m Tour in person Tour via video chat

Pacific Ridge presents Ironwood! Gorgeous new home community centrally located between
Bothell, Mill Creek & Lynnwood. Perched just off North Road with panoramic views to the East, this
neighborhood offers a quiet place to call home with community parks & convenient access to OR

It's free, with no obligat

Continue reading v
Start an offer

Listed by Mari Riksheim « Pacific Ridge - DRH, LLC
Listed by Melissa Cogswell + Pacific Ridge - DRH, LLC

sk a questio (425)5 26
Redfin checked: 3 minutes ago (Jan 3,2023 at 2257pm) * Source: NWMLS #2024145 © Aska question 425)584-3263

Home Facts

Status Active Time on Redfin 5 days

Property Type Residential, HOA Dues $88/month
Residential

Year Built 2023 Style Contemporary

Community Lynnwood Lot Size 6,252 Sq. Ft.

MLS# 2024145

Price Insights

List Price $1.134 995 Est. Mo. Payment $7,420

Redfin Estimate $1,136,063 Price/Sq.Ft $420
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.
/oom Breakout #1

Zillow Estimate/RedFin Estimate

If you are on the market to buy a house, you would perhaps be looking at
“Zestimates’ or “RedFin Estimates” to filter out houses in your budget
range. Discuss in your group, what are the factors that influence the price
of a home and what are the factors (also called features in ML) that may
have been used to construct these estimates. Once you have a set of
factors identified, how do you(combine them to produce the final house
price estimate?

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 2 Jan 6, 2022 19/50



ypical Housing Data, Seattle

e

A

¢ =
| Index | SqFt | #Rooms | # Bathrooms Location Q@
1 2500 4 3 Bothell v |
2 2000 3 2 Bellevue 950k
3 3000 4 3 | Sammamish 1.3 MM
4 3000 4 3 | Issaquah High 1.6 MM
5
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ypical Housing Data, Seattle

Index | SqFt | #Rooms | # Bathrooms Location Selling Price
1 2500 4 3 Bothell 1 MM
2 2000 3 2 Bellevue 950k
3 3000 4 3 | Sammamish 1.3 MM
4 3000 4 3 | Issaquah High 1.6 MM
5
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Other attributes for housing price prediction

o
" \s& / kaw" MJ‘O
AN
2 ( V\M
(e st
Other attribites that matter? > “f/ J
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Categorical vs Numerical Attributes

Categorical

“

Attributes that fall into a clear set of categories. Example: zipcode of a
place )

(Univ. of Washington, Seattle)
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Categorical vs Numerical Attributes

Categorical

(Xttributes that fall into a clear set of categories. Example: zipcode of a
place

Q y

\{\Iumerical
Attributes that fall in a numeric range. Example: weight or height of a
person ]
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Categorical vs Numerical Attributes

Categorical

Attributes that fall into a clear set of categories. Example: zipcode of a
place

Numerical

Attributes that fall in a numeric range. Example: weight or height of a
person

Modeling Choice

Sometimes, whether an attribute is categorical or numerical is a modeling
choice!
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Categorical vs Numerical Attributes

\‘oh (\,‘JK Q
Mﬂtﬁ} et ,ro*“} w9~ “W/
-/ (awjo Ca’*d""‘ ;f:’w(
Categorical fﬁ\lum,e_r\lvcftl / /\pr\
Index | SqFt | #2Rooms | # Bathrooms Locatlon Selling Price
1 2500 4 3 Bothell 1 MM
2 2000 3 2 Bellevue 950k
3 3000 4 3 | Sammamish 1.3 MM
4 3000 4 3 | Issaquah High 1.6 MM
5
/O Chll o j
‘B.:ok.ﬂ-‘\W\/( /g COA"j’P‘iCWQI
P
(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 2 Jan 6, 2022 24 /50




Matrices and Vectors

Data matrix X

—_—

Let's say in our Housing database, we have 1000 houses and 30 attributes.
If we wanted to represent this as a data matrix, X, what would be the
dimensions of such a matrix ? '

bl
2. M

1ooo |
A

Xawdiw’"“ﬁ-—“
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Matrices and Vectors

Data matrix X

Let's say in our Housing database, we have 1000 houses and 30 attributes.
If we wanted to represent this as a data matrix, X, what would be the
dimensions of such a matrix 7

Price vector y

For the same example as before, we take the ho‘using prices of all the
homes and put Them into a price vector y. What would be the dimension
of this vector y 7 i

[R)oocﬁ’éo
Jovor)
/ ~
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S
X and y in housing data

Index | SqFt | #Rooms | # Bathrooms Location Selling Price
1 2500 4 3 Bothell 1 MM
2 2000 3 2 Bellevue 950k
3 3000 4 3 | Sammamish 1.3 MM
4 3000 4 3 | Issaquah High 1.6 MM
5
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e
Linear I\/Ioglel

Linear Model

In Linear models, we assume that the target@is aﬁear com@ of
the attributes or features x. This is a ‘modeling assumption’. The

combination is represented by a weight vector w.
— M v
De tinivn T
— don-Unre
= X~ M’*m faoM

y— oosd —

W— Wwesfht Vel b
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e
Linear Model

Linear Model

In Linear models, we assume that the target, y is a linear combination of
the attributes or features x. This is a ‘modeling assumption’. The
combination is represented by a weight vector w.

v
Visualizing Linear Model
Fitted Line Plot for Linear Model
200 o o
o
190 L]
180
170 a
o
E, 1e0 o °
% 150 ’
140
130
120
110
62 64 66 64 70 72 74
height
v
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Linear Model for Housing Prices Application

House Price vs. Squared Ft Living

10M
8
/t‘\“ M .

hﬂ%&
_ Go PPk
St g

-
-
-
-
-
-
-
-
-
-
-
-
-~
-
=
-

House Price

(Univ. of Washington, Seattle)
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Linear Model
In Linear models, we assume that the target, y is a linear combination of
the attributes or features x. The combination is represented by a weight

vector w. )
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Linear Model
In Linear models, we assume that the target, y is a linear combination of
the attributes or features x. The combination is represented by a weight

vector w. )
In the housing price example
y = wo + @) x1 + () xo + @)X x5 + 09 x J

Bk
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Linear Model
In Linear models, we assume that the target, y is a linear combination of
the attributes or features x. The combination is represented by a weight

vector w. )
In the housing price example
Yy =wy+ wip X X]1+ Wy X Xp+ W3 X X3+ Wg X X4 J
In the housing price example
lMM:wo+w1><25OO+W2><4+W3><§+W4>< Bothell J
— v‘j;— ¥ \& P

/’L S"yﬂ § bnd 6 ba thoon~

SP

=
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Linear Model

In Linear models, we assume that the target, y is a linear combination of
the attributes or features x. The combination is represented by a weight
vector w.

In the housing price example
y =Wwp+ Wy X X1+ Wa X X2+ W3 X X3+ Wwg X Xq

In the housing price example

].MM—Wo—l—Wl X 2500 + wp X 4+ Wy X 3+ ) éoth@

There's one problem though! __

How do we multiply a 'location’ by a weight 7

G G
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Dealing with categorical attributes

One approach: Create new dummy attributes!

XBothell s XBellevue s XSammamish s XlssaquahHigh - One dummy variable for each
location that takes a value 1 it its the true location and 0 otherwise.

Ona-ho} entodht
= [© @ o °

7§Lc)Cc'N")\w\ = N\ ™
0 T Vs oo IOt
= Npglors wSW‘“ ML
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Dealing with categorical attributes

One approach: Create new dummy attributes!

XBothell s XBellevue s XSammamish s XlssaquahHigh - One dummy variable for each
location that takes a value 1 if its the true location and 0 otherwise.

ICE #1 (2 mins): How many attribues do we have now?

Let's say our data consisted of the following attributes: Square Footage,
# Rooms, # Bathrooms, Location. After applying “pre-processing” to the
data of introducing dummy attributes, how many total attributes do we
have now ? Answer poll(pollev.com/karthikmohan088')

=

&) \o -
) \2-

/ cy \6 T
A ¢
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Moditying the Data Matrix

Where we started: X

Index

X1

X2

X3

X4

1

2500

4

Bothell

1 MM

(Univ. of Washington, Seattle)
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I
Modifying the Data Matrix

Where we started: X

Index X1 | Xo | X3 X4 y
1 2500 | 4 3 | Bothell | 1 MM

After pre-processing for categorical attributes:
Index | Xy | 0o | X3 | Xa | X5 | X6 | - -~ - — Ay Ne

3

Qoo Datr — ?wm Dafe —= Fesos
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I
Modifying the Data Matrix

Where we started: X

Index

X1

X2

X3

X4

Y

1

2500

4

3

Bothell

1 MM

After pre-processing for categorical attributes: New X

Index | x1 | X0 | X3 | Xa | X5 | Xg
1
2
Lo
Does vector y change? A — 7(:t,a,,(,x)é
doosk & NELD
}§ﬂ<>odﬁﬁﬂ» — ﬁach\gkd’
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e
Back to the Linear Model

A formula for the house price

Let y; be the price of the iy, home. Let Xj; denote the j;, attribute of the
ith, home. Then

Vil~ wgy + w1 )X Xj1 + wo X Xjo + w3 X Xj3+ ...

—

X o X
M
% i——— = Y ] \d(:
‘./ ’ \ -

My n]
= :)M\“‘-L‘Ih - ) Y= Wk,

— Pa oo 16 looo Xl
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e
Back to the Linear Model

A formula for the house price

Let y; be the price of the iy, home. Let Xj; denote the j;, attribute of the
ith, home. Then

Vi~ wy+ wy X Xjp+we X Xio+wg X Xiz+ ...

A succinct expression for the iz, house

Vi = w'X; =w- X
L . X . =% .
i
N

/.

(Univ. of Washington, Seattle)
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e
Back to the Linear Model

A formula for the house price

Let y; be the price of the iy, home. Let Xj; denote the j;, attribute of the
ith, home. Then

Vi~ wy+ wy X Xjp+we X Xio+wg X Xiz+ ...

A succinct expression for the iz, house

ICE #2 (2 mins): Succinct expression for y in terms of X and w? J

'\ ~ (~
[%1 Y = Aw %, j U
3 = — X
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Linear Regression: Putting it all Together

Definition

Find the best Welghts/parameters/coeffluent@uch that XTW is as
close to y, - as possible! AL¢{ —_
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Linear Regression: Putting it all Together

Definition

Find the best weights/parameters/coefficients w such that X" w is as
close to y; as possible!

Mathematically

Minimize the following expression:

min [|[Xw — y||3
w N

" ’
- 1 0 i > Dm\a
1Bh= 3454 TN s W= ke § Y
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Linear Regression: Putting it all Together

Definition

Find the best weights/parameters/coefficients w such that X" w is as
close to y; as possible!

Mathematically

Minimize the following expression:

min [[Xw — y|13
w

Estimate or “learned” parameter

Represented usually by w and y is the “predicted” house price for all the
homes.

(Univ. of Washington, Seattle)
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Linear Regression: Putting it all Together

Definition

Find the best weights/parameters/coefficients w such that X" w is as
close to y; as possible!

Mathematically

Minimize the following expression:

min [[Xw — y|13
w

Estimate or “learned” parameter

Represented usually by w and y is the “predicted” house price for all the
homes.

ICE #3 (1 min)
|

What's the succinct expression for y?
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e
Line of best fit

Best fit

o

)
w defines the line of best fit. h(x) = w' x gives us the line and in higher
dimensions, it's called a “hyperplane”.

(Univ. of Washington, Seattle)
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e
Line of best fit

Best fit

w defines the line of best fit. h(x) = w' x gives us the line and in higher
dimensions, it's called a “hyperplane”.

] ] @‘k?vubu
Housing price example /

10M House Price vs. Squared Ft Living Yo .

House Price

-

-
-~
-
-
-
-
-
-
-
-
-
-
-
-
‘—
-
-

0 2 4 6 8 10 12 )( 14K
Squared Feet
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Line of best fit

Housing price example

10M House Price vs. Squared Ft Living

House Price

-
-
-
-
-
-
-
-~
-
~
—‘
-

0 2 - 6 8 10 12 14K
Squared Feet
y
ICE #4 (1 min)
What would you say is the value of the bias, wy for the line in the visual
above? - )
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Hyperplane in 3 dimensions

Housing price example

{OM House Price vs. Squared Ft Living

House Price

- "
~
-
-

-
-
-
-~
-
-
-
-
-
-
-
-
.—
-
-

0 2 4 6 8 10 12 14K
Squared Feet

3 dim hyperplane
A AV

Yy =wp+ wy X X3+ w2 X X2

x1 could be square footage and x» could be number of bedrooms.
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Linear Regression

Closed form!

There is actually a closed form expression for Linear Regression!
Y 9 E LH»fV”\d\\M‘:D\'qu‘_NJa Mﬁ"'\”‘
min || Xw — y/||3 )
F \ w = A0 OCN
" KT\/__» | | (evodient parcerdf
W= (X @), X"y (Q: How do we arrive at this?) <D )
= YT
atshe G = I T Ay
mia L) _ mia (T Tw —2WTX +979 s ok bk
W - dYy=o T

w

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 2 Jan 6, 2022 37 /50




Linear Regression

Closed form!

There is actually a closed form expression for Linear Regression!

min [ Xw — y||3
w

(XTX)7IXTy! (Q: How do we arrive at this?)

W

In practice!

In practice, a linear regression library might revert to doing “gradient
descent” on the learning objective. Why do that?

(Univ. of Washington, Seattle)
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Housing price Example

Pre-processing of data

One is taking care of categorical variables such as location with dummy
attributes (also called ‘bag of words’ model). Anything else we may need
to do on the data to get good predictions?
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raining the Linear Regression Model

(Univ. of Washington, Seattle)
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Can we use of all of data for training?

@ Why not use all data for training ?

(Univ. of Washington, Seattle)
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he phenomenon of Overfitting

Overfitting

Overfitting is when your mdoel performs great on training data but
doesn’t match up on test data. To account for overfitting, we also have a

validation data set. )

EEP 596: Adv Intro ML || Lecture 2 Jan 6, 2022 41 /50

(Univ. of Washington, Seattle)




S
Understanding over-fitting better

When do we expect over-fitting?

When the number of attributes in our model exceeds the size of the data
set.

In terms of data matrix X
# rows << 7t columns J

(Univ. of Washington, Seattle)
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S
Data Splits for Machine Learning

e Training Learning parameters/weights, i.e. w for Linear Regression is
called Training.

(Univ. of Washington, Seattle)
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Data Splits for Machine Learning

e Training Learning parameters/weights, i.e. w for Linear Regression is
called Training.

@ We don't use all data for training - Some portion of the data is kept
for validation and testing.
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Data Splits for Machine Learning

e Training Learning parameters/weights, i.e. w for Linear Regression is
called Training.

@ We don't use all data for training - Some portion of the data is kept
for validation and testing.

e Data Splits: Usually, 80% of data is kept for training, 10% for
validation and 10% for training. The splits are chosen randomly:.

EEP 596: Adv Intro ML || Lecture 2 Jan 6, 2022 43 /50

(Univ. of Washington, Seattle)




S
Data Splits for Machine Learning

e Training Learning parameters/weights, i.e. w for Linear Regression is
called Training.

@ We don't use all data for training - Some portion of the data is kept
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e Data Splits: Usually, 80% of data is kept for training, 10% for
validation and 10% for training. The splits are chosen randomly:.

@ Why not use all data for training ?
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S
Data Splits for Machine Learning

e Training Learning parameters/weights, i.e. w for Linear Regression is
called Training.

@ We don't use all data for training - Some portion of the data is kept
for validation and testing.

e Data Splits: Usually, 80% of data is kept for training, 10% for
validation and 10% for training. The splits are chosen randomly:.

@ Why not use all data for training ?

@ Why not just have train and test data? What's the point of
validation data set?

(Univ. of Washington, Seattle)
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I
Example: 70 : 10 : 20 Train-Val-Test data split

Choose 70% train data at random
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I
Example: 70 : 10 : 20 Train-Val-Test data split

Add 20% test data at random
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I
Example: 70 : 10 : 20 Train-Val-Test data split

Remainder becomes validation data
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I
Coding Pointers

@ Pandas library in Python is good for data pre-processing before
training your Linear Regression model

(Univ. of Washington, Seattle)
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Coding Pointers

@ Pandas library in Python is good for data pre-processing before
training your Linear Regression model

@ Dummy attributes for categorical variables can also be added in
through pandas.get dummies () method.
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Coding Pointers

@ Pandas library in Python is good for data pre-processing before
training your Linear Regression model

@ Dummy attributes for categorical variables can also be added in
through pandas.get dummies () method.

@ Use Scikit-learn for implementing Linear Regression
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I
Coding Pointers

@ Pandas library in Python is good for data pre-processing before
training your Linear Regression model

@ Dummy attributes for categorical variables can also be added in
through pandas.get dummies () method.

@ Use Scikit-learn for implementing Linear Regression

@ Should now be ready to tackle both the conceptual and programming
Assignment 1!
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Summary so far

@ Linear Regression finds a line of best fit through the data.

@ R? measure determines the goodness of fit.

@ Usually multiple good attributes are needed for a good prediction and
a good fit.

@ Data pre-processing. Categorical attributes are handled through
creation of dummy attributes and in addition normalizing of the
attributes brings all attributes on the same scale for regression.

@ We have a closed form/analytical solution for Linear Regression, but
for large data sets, gradient descent algorithm (iterative) gets used for
scalability reasons.

@ We don't use all of a data set for training. A portion of data is kept
for validation and testing. This is to prevent over-fitting and also for
fair evaluation purposes.

@ The data set split is usually 80 — 10 — 10 or 70 — 10 — 20
(train-val-test).
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Summary so far

@ Over-fitting happens when we have fewer data points as compared to
the number of attributes or features.

@ Over-fitting can be taken care off by increasing data-set size,
decreasing number of attributes or through regularization strategies
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I
Questions/ Thoughts?

(Univ. of Washington, Seattle)
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