EEP 596: Adv Intro ML || Lecture 4 Dr. Karthik Mohan

Univ. of Washington, Seattle

January 12, 2023

- Conceptual 1 is assigned
- Any questions on logistics?

Today's class!

- Recap of Overfitting and Regularization
- Gradient Descent and SGD Algorithm
- Introduction to Classification in ML

When is Model A under-fitting as compared to Model B?

Let A_{train} be train error of model A and A_{val} be validation error of model A and the same notation for model B.

• a)
$$A_{train} < B_{train}$$
 and $A_{val} > B_{val}$

• b)
$$A_{train} > B_{train}$$
 and $B_{val} < A_{val}$

• c)
$$A_{train} < B_{train}$$
 and $A_{val} < B_{val}$

• d)
$$A_{train} > B_{train}$$
 and $B_{val} > A_{val}$

ICE #1 graphed

Over-fitting and Remedies

Remedy	Name	Benefits
ℓ_2 Reg.	Ridge Regression	No large weights
ℓ_1 Reg.	Lasso	Removes un-important features
$\ell_1 - \ell_2$ Reg.	Elastic Net	Combined benefits
Feature Selection		Reduces d so that $d \ll N$
Increase dataset size	Data Aug.	Increases N so that $N >> d$

Understanding ℓ_1 and ℓ_2 norms better

Understanding ℓ_1 and ℓ_2 norms better

Understanding ℓ_1 and ℓ_2 norms better

Understanding ℓ_1 and ℓ_2 norms in one dimension

Over-fitting and Remedies

Remedy	Name	Benefits
ℓ_2 Reg.	Ridge Regression	No large weights
ℓ_1 Reg.	Lasso	Removes un-important features
$\ell_1 - \ell_2$ Reg.	Elastic Net	Combined benefits
Feature Selection		Reduces d so that $d \ll N$
Increase dataset size	Data Aug.	Increases N so that $N >> d$

ICE #2

Manhattan and Euclidean Distance

Every **norm** of a vector (or a matrix) gives rise to a **distance metrics**. Norm is a measure of magnitude of a vector (or matrix) while distance metric is a measure of well, distance between two vectors. Consider for instance the distance between Seattle and Bellevue. If you drew a straight-line between the two cities, that would be the **Euclidean distance**. However, if you start in downtown seattle, and take SR-520, that is equivalent to the ℓ_1 distance or **Manhattan distance**. Compute the Euclidean and Manhattan distance between two vectors,

x = [1, 2, 3], y = [2, 4, -1]. The distances are closest to:

- 1 7 and 4
- 4 and 7
- 🗿 7 and 5
- 4 5 and 7

Conceputal Assignment 2

We will look at the numerical impact of ℓ_1 and ℓ_2 norms (used in Lasso and Ridge Regression) on the weights learned in one of the conceptual assignments.

13/42

Algorithmic foundations to Machine Learning

Underlying Engine behind ML Training

(Mini-batch) Stochastic Gradient Descent Almost every model and problem-space in ML uses SGD of some kind - Clustering, Regression, Deep Learning, Computer Vision and NLP to name a few. Almost every algorithm in every library - Scikit-learn, Keras, Pytorch, etc uses **mini-batch SGD under the hood**.

Fundamentally

Take a convex/non-convex function, f. GD allows you to find a local optimum to f.

15/42

Fundamentally

Take a convex/non-convex function, f. GD allows you to find a local optimum to f.

Why is this important?

Consider the Linear Regression problem. \hat{w} is a local optimum to the function $f(w) = \frac{1}{2} ||Xw - y||_2^2 + \lambda ||w||_2^2$

Negative Gradient helps you view the direction of descent

Computed by Wolfram jAlpha

computed by womampepha

Negative Graidents on a Kauai peak!

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 4

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best \hat{w} that does that.

• Initialize $w = w_0$ (maybe randomize)

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best \hat{w} that does that.

- Initialize $w = w_0$ (maybe randomize)
- **2** Gradient Descent $w \leftarrow w lr * \nabla L(w)$

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best \hat{w} that does that.

- Initialize $w = w_0$ (maybe randomize)
- **2** Gradient Descent $w \leftarrow w lr * \nabla L(w)$
- **Iterate** Repeat step 2 until *w* converges, i.e.

$$||w^{k+1} - w^k|| / ||w^k|| \le 10^{-3}$$

GD in one dimension

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 4

January 12, 2023

Loss function in 2 dimensions

Computed by Wolfram JAlpha

Computed by Wolfram Alpha

ICE #3

Gradient of Ridge Regularizer (2 mins)

Find the gradient of the regularization function, $R(w) = \lambda ||w||_2^2$. I.e. obtain the expression for, $\nabla_w R(w)$?

- a) $2\lambda \|w\|_2$
- b) $\lambda \|w\|_2 w$
- c) 2λw
- d) $2\lambda \|w\|_2 w$

21 / 42

ICE #3

Gradient of Ridge Regularizer (2 mins)

Find the gradient of the regularization function, $R(w) = \lambda ||w||_2^2$. I.e. obtain the expression for, $\nabla_w R(w)$?

- a) $2\lambda \|w\|_2$
- b) $\lambda \|w\|_2 w$
- c) 2λw
- d) $2\lambda \|w\|_2 w$

In Assignment 2

We will have a question comparing GD and exact solution for Ridge Regression! Comparison on computation time and accuracy and how both the methods scale?

Gradient Descent Properties

Gradient Descent converges to a local minimum

Gradient Descent Properties

- Gradient Descent converges to a local minimum
- If L is a convex function, all local minima become a global minima!

Gradient Descent Properties

- Gradient Descent converges to a local minimum
- If L is a convex function, all local minima become a global minima!
- Wherever we start, gradient descent usually finds a local minima closest to the start.

Effect of Learning Rate

EEP 596: Adv Intro ML || Lecture 4

(Univ. of Washington, Seattle)

GD behavior in the search space

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

Initialize w^0 (randomize)

SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *i*th data point (x_i, y_i) and parameter w.

Initialize w^0 (randomize) Pick index *i* at random between 1 and N!

SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

- **Initialize** w^0 (randomize) Pick index *i* at random between 1 and N!
- **2** Gradient Descent $w^{k+1} \leftarrow w lr * \nabla L_i(w^k)$

SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

- **Initialize** w^0 (randomize) Pick index *i* at random between 1 and N!
- **2** Gradient Descent $w^{k+1} \leftarrow w lr * \nabla L_i(w^k)$
- Solution Iterate Repeat step 2 and 3 until w converges, i.e.

$$\|w^{k+1} - w^k\| / \|w^k\| \le 10^{-3}$$

SGD behavior in search space

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *i*th data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

1 Initialize $w = w_0$ (randomize)

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *i*th data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

Initialize w = w₀ (randomize) Pick a batch of k data points at random between 1 and N: i₁, i₂, ..., i_k!

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *i*th data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

- Initialize w = w₀ (randomize) Pick a batch of k data points at random between 1 and N: i₁, i₂, ..., i_k!
- **3** Gradient Descent $w^{k+1} \leftarrow w^k lr * \sum_{j=1}^k \nabla_w L_{i_j}(w^k)$

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *i*th data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

- Initialize w = w₀ (randomize) Pick a batch of k data points at random between 1 and N: i₁, i₂, ..., i_k!
- **3** Gradient Descent $w^{k+1} \leftarrow w^k lr * \sum_{j=1}^k \nabla_w L_{i_j}(w^k)$
- Iterate Repeat step 2 and 3 until w converges, i.e.

$$\|w^{k+1} - w^k\| / \|w^k\| \le 10^{-3}$$

GD vs Mini-batch convergence behavior

GD vs mini-batch SGD

Factor	GD	Mini-batch SGD	
Data	All per iteration	Mini-batch (usually 128 or 256)	
Randomness	Deterministic	Stochastic	
Error reduction	Monotonic	Stochastic	
Computation High		Low	
Memory big data	Intractable	Tractable	
Convergence	Low relative error	Few "passes" on data	
Local Minima traps	Yes	No	

Course Outline

Week	Lecture Material	Assignment
1	Linear Regression	Housing Price Prediction
2	Classification	Spam classification (Kaggle)
3	Classification	Flower/Leaf classification
4	Clustering	MNIST digits clustering
5	Anomaly Detection	Crypto Prediction (Kaggle $+$ P)
6	Data Visualization	Crypto Prediction (Kaggle $+ P$)
7	Deep Learning	Visualizing 1000 images
8	Deep Learning (DL)	ECG Arrythmia Detection
9	DL in NLP	TwitterSentiment Analysis (Kaggle + P)
10	DLs in Vision	TwitterSentiment Analysis (Kaggle + P)

Classification in Machine Learning

31 / 42

Difference between Classification and Regression

Simple difference

The target type in Regression is **numeric** whereas that in classification is **categorical**

32 / 42

Difference between Classification and Regression

Simple difference

The target type in Regression is **numeric** whereas that in classification is **categorical**

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with multiple categories, we have a multi-class classification.

33 / 42

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with multiple categories, we have a multi-class classification.

Target is called Label

For binary classification, the convention is to label the target as positive or negative. Example: Positive for spam and negative for not-spam

Spam Classification Example

Email excerpt	Туре	Label
Could you please respond by tomorrow?	Not-spam	-1
Congratulations!!! You have been selected	Spam	+1
Looking forward to your presentation	Not-spam	-1

Linear Separability

Approximate Linear Separability

Which of the following data sets is the closest to being linearly separable?

37 / 42

Logistic Regression

LR fundamentals

- Linear Model
- Want score $w^T x^i > 0$ for $y_i = +1$ and $w^T x_i < 0$ for $y_i = -1!$
- If linearly separable data, above is feasible. Else, minimize error in separability!!

Logistic Regression

Probability for a class

In LR, the score, $w^T x$ is converted to a probability through the sigmoid function. So we can talk about $P(\hat{y^i} = +1)$ or $P(\hat{y^i} = -1)$

Sigmoid Function

39 / 42

LR represented Graphically

Logistic Regression

LR Prediction

$$\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$$

LR Loss

Assume that $y_i = 0$ or $y_i = 1$ (i.e. the negative class has a label 0). Then the binary cross-entropy loss applies to LR:

$$\min_{w} y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)$$

- Why gradients are important?
- GD vs SGD vs Mini-batch SGD
- Why mini-batch SGD is preferred?
- Regression vs Classification
- Decision Boundary and Linear Separability
- Logistic Regression