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Logistics

Conceptual 1 is assigned

Any questions on logistics?
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Today’s class!

Recap of Overfitting and Regularization

Gradient Descent and SGD Algorithm

Introduction to Classification in ML
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ICE #1 (2 mins)

When is Model A under-fitting as compared to Model B?

Let Atrain be train error of model A and Aval be validation error of model
A and the same notation for model B.

a) Atrain < Btrain and Aval > Bval

b) Atrain > Btrain and Bval < Aval

c) Atrain < Btrain and Aval < Bval

d) Atrain > Btrain and Bval > Aval
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ICE #1 graphed
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Over-fitting and Remedies

Remedy Name Benefits

ℓ2 Reg. Ridge Regression No large weights

ℓ1 Reg. Lasso Removes un-important features

ℓ1 − ℓ2 Reg. Elastic Net Combined benefits

Feature Selection Reduces d so that d << N

Increase dataset size Data Aug. Increases N so that N >> d
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Understanding ℓ1 and ℓ2 norms better
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Understanding ℓ1 and ℓ2 norms better
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Understanding ℓ1 and ℓ2 norms in one dimension
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ICE #2

Manhattan and Euclidean Distance

Every norm of a vector (or a matrix) gives rise to a distance metrics.
Norm is a measure of magnitude of a vector (or matrix) while distance
metric is a measure of well, distance between two vectors. Consider for
instance the distance between Seattle and Bellevue. If you drew a
straight-line between the two cities, that would be the Euclidean
distance. However, if you start in downtown seattle, and take SR-520,
that is equivalent to the ℓ1 distance or Manhattan distance. Compute
the Euclidean and Manhattan distance between two vectors,
x = [1, 2, 3], y = [2, 4,−1]. The distances are closest to:

1 7 and 4

2 4 and 7

3 7 and 5

4 5 and 7
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Understanding regularization better

Conceputal Assignment 2

We will look at the numerical impact of ℓ1 and ℓ2 norms (used in Lasso
and Ridge Regression) on the weights learned in one of the conceptual
assignments.
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Algorithmic foundations to Machine Learning

Underlying Engine behind ML Training

(Mini-batch) Stochastic Gradient Descent Almost every model
and problem-space in ML uses SGD of some kind - Clustering, Regression,
Deep Learning, Computer Vision and NLP to name a few. Almost every
algorithm in every library - Scikit-learn, Keras, Pytorch, etc uses
mini-batch SGD under the hood.

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 14 / 42



So what is Gradient Descent?

Fundamentally

Take a convex/non-convex function, f . GD allows you to find a local
optimum to f .

Why is this important?

Consider the Linear Regression problem. ŵ is a local optimum to the
function f (w) = 1

2∥Xw − y∥22 + λ∥w∥22
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function f (w) = 1

2∥Xw − y∥22 + λ∥w∥22

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 15 / 42



Negative Gradient helps you view the direction of descent
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Negative Graidents on a Kauai peak!
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Gradient Descent

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best ŵ
that does that.

1 Initialize w = w0 (maybe randomize)

2 Gradient Descent w ← w − lr ∗ ∇L(w)

3 Iterate Repeat step 2 until w converges, i.e.

∥wk+1 − wk∥/∥wk∥ ≤ 10−3
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GD in one dimension
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Loss function in 2 dimensions
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ICE #3

Gradient of Ridge Regularizer (2 mins)

Find the gradient of the regularization function, R(w) = λ∥w∥22. I.e.
obtain the expression for, ∇wR(w)?

a) 2λ∥w∥2
b) λ∥w∥2w
c) 2λw

d) 2λ∥w∥2w

In Assignment 2

We will have a question comparing GD and exact solution for Ridge
Regression! Comparison on computation time and accuracy and how both
the methods scale?
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Gradient Descent Properties

1 Gradient Descent converges to a local minimum

2 If L is a convex function, all local minima become a global minima!

3 Wherever we start, gradient descent usually finds a local minima
closest to the start.
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Effect of Learning Rate
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GD behavior in the search space

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 24 / 42



Gradient descent in practice - SGD!

SGD

Let L(w) =
∑N

i=1 Li (w) where Li is a function of only the ith data point
(xi , yi ) and parameter w .

1 Initialize w0 (randomize)

Pick index i at random between 1 and N!

2 Gradient Descent wk+1 ← w − lr ∗ ∇Li (wk)

3 Iterate Repeat step 2 and 3 until w converges, i.e.

∥wk+1 − wk∥/∥wk∥ ≤ 10−3
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SGD behavior in search space
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SGD in practice - mini-batch SGD!

mini-batch SGD

Let L(w) =
∑N

i=1 Li (w) where Li is a function of only the ith data point
(xi , yi ) and parameter w . Let B be the number of batches and k be the
batch size.

1 Initialize w = w0 (randomize)

Pick a batch of k data points at
random between 1 and N: i1, i2, . . . , ik !

2 Gradient Descent wk+1 ← wk − lr ∗
∑k

j=1∇wLij (w
k)

3 Iterate Repeat step 2 and 3 until w converges, i.e.

∥wk+1 − wk∥/∥wk∥ ≤ 10−3
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GD vs Mini-batch convergence behavior

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 28 / 42



GD vs mini-batch SGD

Factor GD Mini-batch SGD

Data All per iteration Mini-batch (usually 128 or 256)

Randomness Deterministic Stochastic

Error reduction Monotonic Stochastic

Computation High Low

Memory big data Intractable Tractable

Convergence Low relative error Few “passes” on data

Local Minima traps Yes No
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Course Outline

Week Lecture Material Assignment

1 Linear Regression Housing Price Prediction

2 Classification Spam classification (Kaggle)
3 Classification Flower/Leaf classification

4 Clustering MNIST digits clustering

5 Anomaly Detection Crypto Prediction (Kaggle + P)

6 Data Visualization Crypto Prediction (Kaggle + P)

7 Deep Learning Visualizing 1000 images

8 Deep Learning (DL) ECG Arrythmia Detection

9 DL in NLP TwitterSentiment Analysis (Kaggle + P)

10 DLs in Vision TwitterSentiment Analysis (Kaggle + P)
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Classification in Machine Learning
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Difference between Classification and Regression

Simple difference

The target type in Regression is numeric whereas that in classification is
categorical
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Types of Classification

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with
multiple categories, we have a multi-class classification.

Target is called Label

For binary classification, the convention is to label the target as positive or
negative. Example: Positive for spam and negative for not-spam

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 33 / 42



Types of Classification

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with
multiple categories, we have a multi-class classification.

Target is called Label

For binary classification, the convention is to label the target as positive or
negative. Example: Positive for spam and negative for not-spam

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 33 / 42



Spam Classification Example

Email excerpt Type Label

Could you please respond by tomorrow? Not-spam -1

Congratulations!!! You have been selected... Spam +1

Looking forward to your presentation... Not-spam -1

. . . . . . . . .
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Linear Separability
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Approximate Linear Separability

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML ∥ Lecture 4 January 12, 2023 36 / 42



ICE #4

Which of the following data sets is the closest to being linearly separable?
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Logistic Regression

LR fundamentals

Linear Model

Want score wT x i > 0 for yi = +1 and wT xi < 0 for yi = −1!
If linearly separable data, above is feasible. Else, minimize error in
separability!!
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Logistic Regression

Probability for a class

In LR, the score, wT x is converted to a probability through the sigmoid
function. So we can talk about P(ŷ i = +1) or P(ŷ i = −1)

Sigmoid Function
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LR represented Graphically
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Logistic Regression

LR Prediction

ŷi =
1

1 + e−ŵT x i

LR Loss

Assume that yi = 0 or yi = 1 (i.e. the negative class has a label 0).
Then the binary cross-entropy loss applies to LR:

min
w

yi log(ŷi ) + (1− yi ) log(1− ŷi )
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Summary

Why gradients are important?

GD vs SGD vs Mini-batch SGD

Why mini-batch SGD is preferred?

Regression vs Classification

Decision Boundary and Linear Separability

Logistic Regression
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