EEP 596: Adv Intro ML | Lecture 4

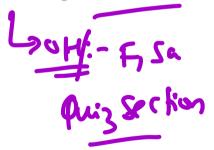
Dr. Karthik Mohan

Univ. of Washington, Seattle

January 12, 2023

Logistics

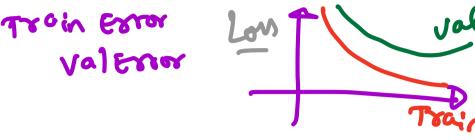
- Conceptual 1 is assigned
- Any questions on logistics?



Today's class!

- Recap of Overfitting and Regularization
- Gradient Descent and SGD Algorithm
- Introduction to Classification in ML

ICE #1 (2 mins)

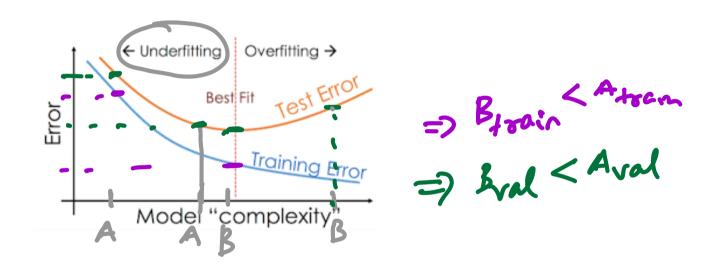


When is Model A under-fitting as compared to Model B?

Let A_{train} be train error of model A and A_{val} be validation error of model A and the same notation for model B.

- \bullet a) $A_{train} < B_{train}$ and $A_{val} > B_{val}$
 - ullet b) $A_{train} > B_{train}$ and $B_{val} < A_{val}$
- \times c) $A_{train} < B_{train}$ and $A_{val} < B_{val}$
 - ullet d) $A_{train} > B_{train}$ and $B_{val} > A_{val}$

ICE #1 graphed



Over-fitting and Remedies

perelty thom = Regularized Lon

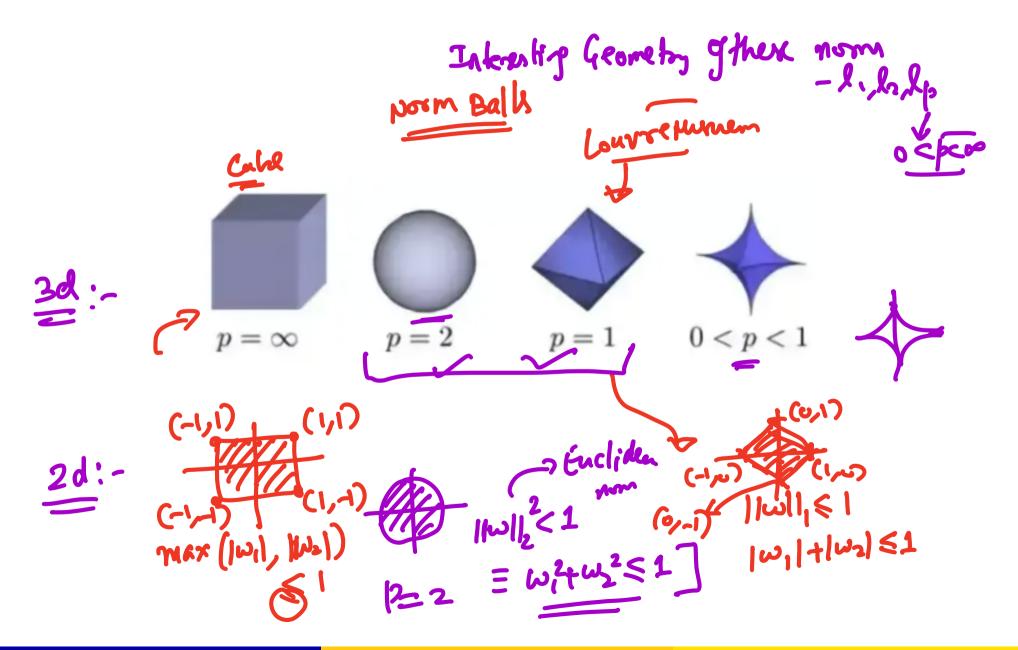
	Remedy	Name	Benefits
الملك	ℓ_2 Reg.	Ridge Regression	No large weights
July	ℓ_1 Reg.	Lasso	Removes un-important features
ℓ_1	$-\ell_2$ Reg.	Elastic Net	Combined benefits
Feature Selection		×	Reduces d so that $d << N$
Increase dataset size		Data Aug.	Increases N so that $N >> d$

3) Red Data 2) Synthetic 3) Corestithe (- [d >>N)

4 per Data 2) Cota Any Hersomphilip From Hersompher

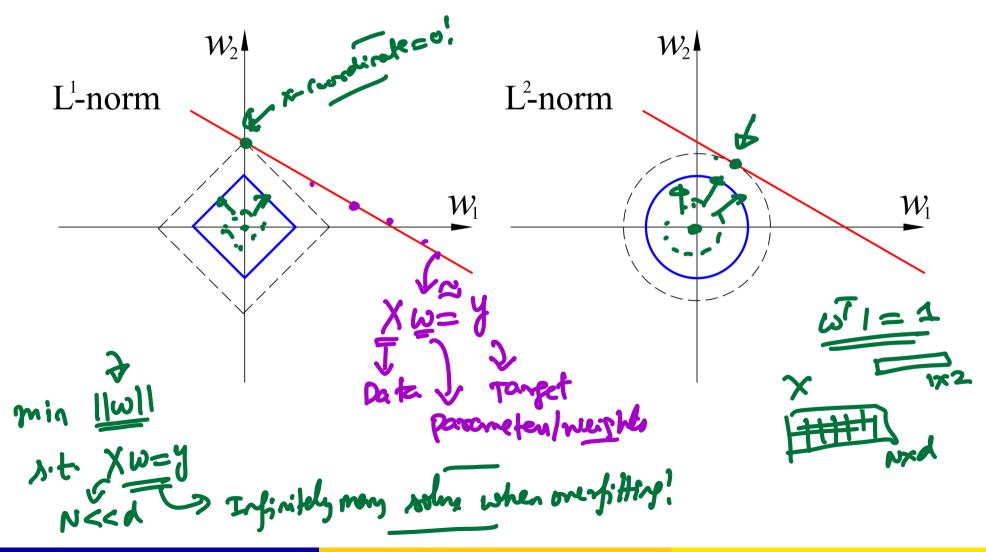
a) Increase NT b) Decrease of

Understanding ℓ_1 and ℓ_2 norms better

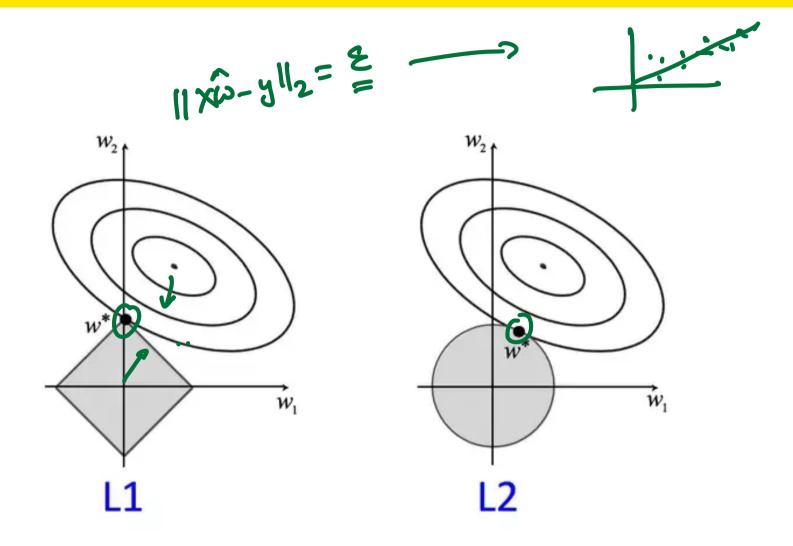


Understanding ℓ_1 and ℓ_2 norms better

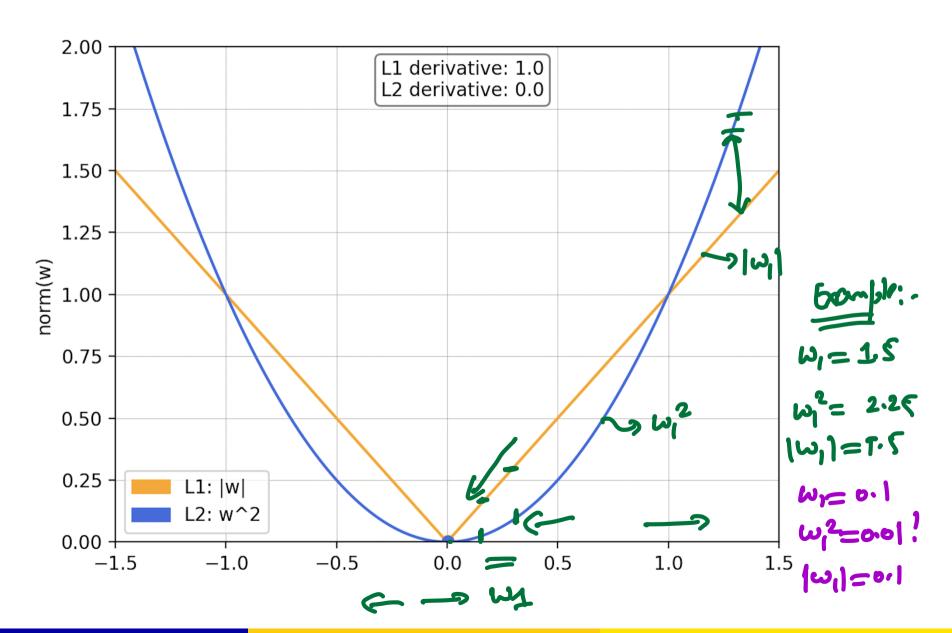
Linear Regression coverfithing



Understanding ℓ_1 and ℓ_2 norms better



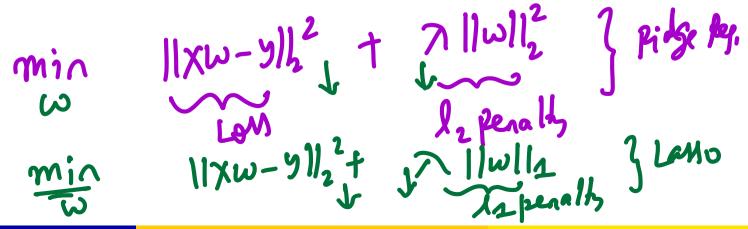
Understanding ℓ_1 and ℓ_2 norms in one dimension



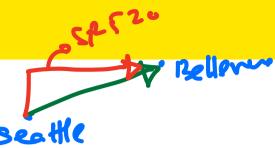
WI

Over-fitting and Remedies

Remedy	Name	Benefits
ℓ_2 Reg.	Ridge Regression	No large weights
ℓ_1 Reg.	Lasso	Removes un-important features
$\ell_1 - \ell_2$ Reg.	Elastic Net	Combined benefits
Feature Selection		Reduces d so that $d \ll N$
Increase dataset size	Data Aug.	Increases N so that $N >> d$



ICE #2



Manhattan and Euclidean Distance

Every **norm** of a vector (or a matrix) gives rise to a **distance metrics**. Norm is a measure of magnitude of a vector (or matrix) while distance metric is a measure of well, distance between two vectors. Consider for instance the distance between Seattle and Bellevue. If you drew a straight-line between the two cities, that would be the **Euclidean distance**. However, if you start in downtown seattle, and take SR-520, that is equivalent to the ℓ_1 distance or **Manhattan distance**. Compute the Euclidean and Manhattan distance between two vectors, x = [1, 2, 3], y = [2, 4, -1]. The distances are closest to:

- 7 and 4
- 4 and 7
- **3** 7 and 5
- 5 and 7

$$||X - y||_{2} = \sqrt{(x_{1} - y_{1})^{2} + (x_{2} - y_{3})^{2} + (x_{3} - y_{3})^{2}}$$

$$||X - y||_{2} = ||X_{1} - y_{1}| + ||X_{2} - y_{3}| + ||X_{3} - y_{3}|$$

Understanding regularization better

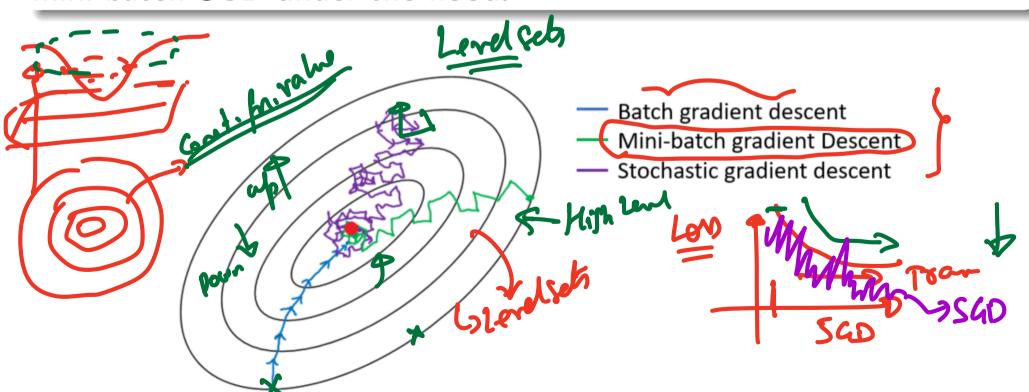
Conceputal Assignment 2

We will look at the numerical impact of ℓ_1 and ℓ_2 norms (used in Lasso and Ridge Regression) on the weights learned in one of the conceptual assignments.

Algorithmic foundations to Machine Learning

Underlying Engine behind ML Training

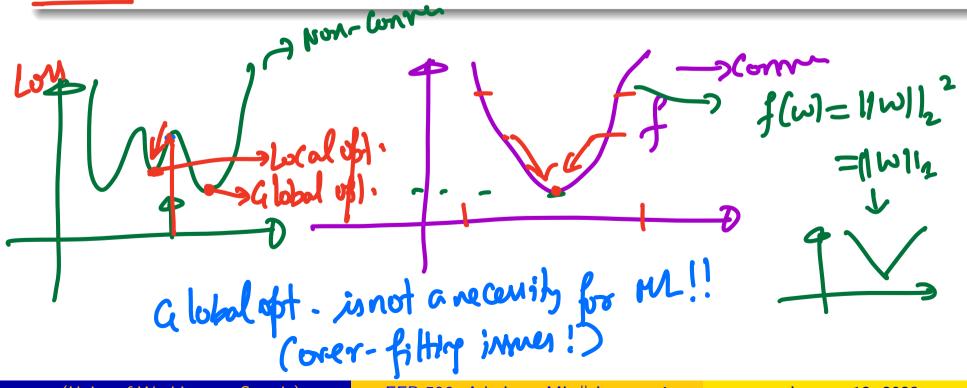
(Mini-batch) Stochastic Gradient Descent Almost every model and problem-space in ML uses SGD of some kind - Clustering, Regression, Deep Learning, Computer Vision and NLP to name a few. Almost every algorithm in every library - Scikit-learn, Keras, Pytorch, etc uses mini-batch SGD under the hood.



So what is Gradient Descent?

Fundamentally

Take a convex/non-convex function, f. GD allows you to find a local optimum to f.



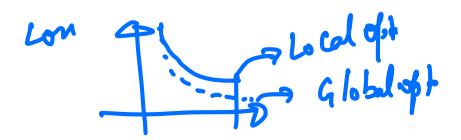
So what is Gradient Descent?

Fundamentally

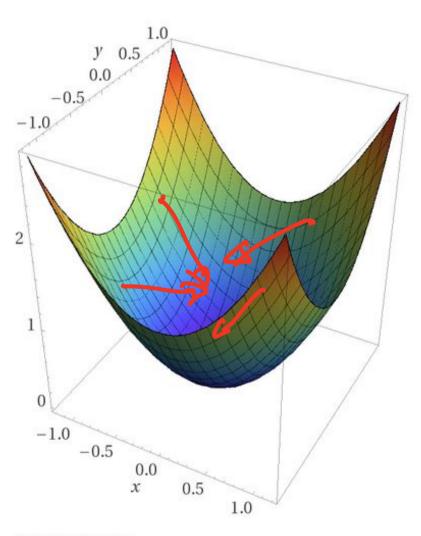
Take a convex/non-convex function, f. GD allows you to find a local optimum to f.

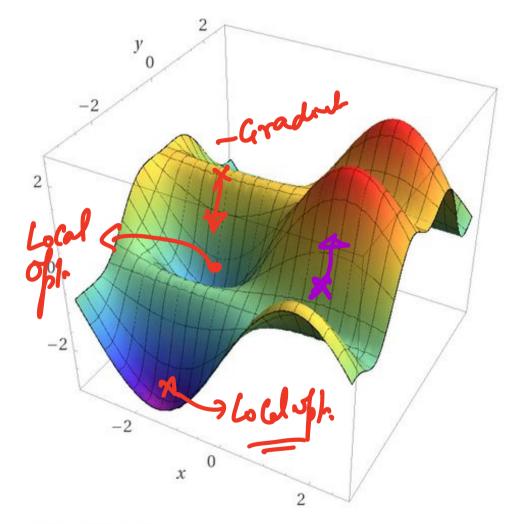
Why is this important?

Consider the Linear Regression problem. \hat{w} is a local optimum to the function $f(w) = \frac{1}{2} ||Xw - y||_2^2 + \lambda ||w||_2^2$



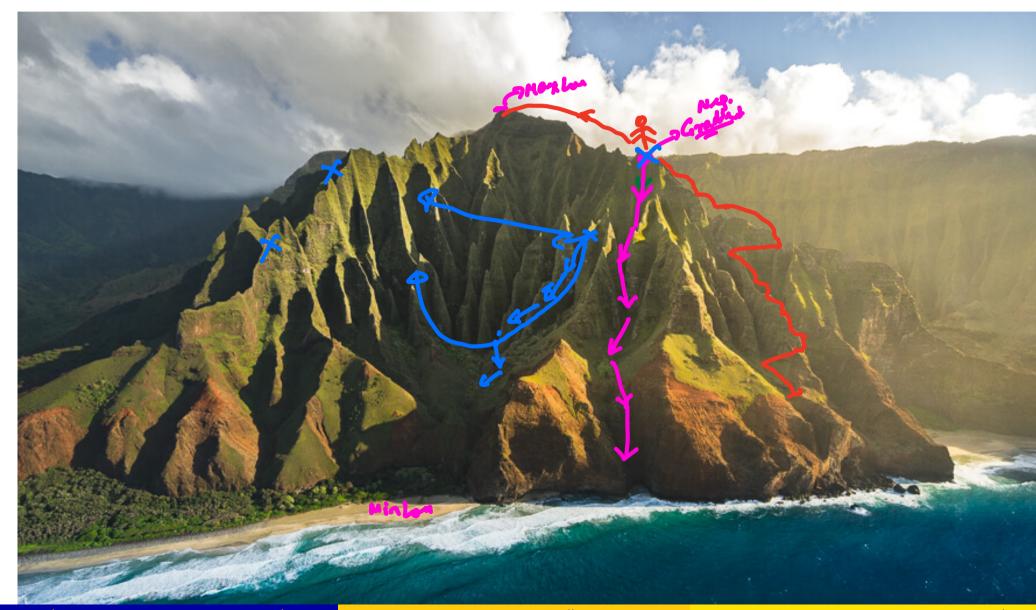
Negative Gradient helps you view the direction of descent





Computed by Wolfram Alpha

Negative Graidents on a Kauai peak!



Gradient Descent

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best \hat{w} that does that.

1 Initialize $w = w_0$ (maybe randomize)

Gradient Descent

Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best \hat{w} that does that.

1 Initialize $w = w_0$ (maybe randomize)

Gradient Descent $w \leftarrow w - lr * \nabla L(w)$ j Take astepin the direction of th (Step Size)
(Clearning Rate Schedulers"

Gradient Descent

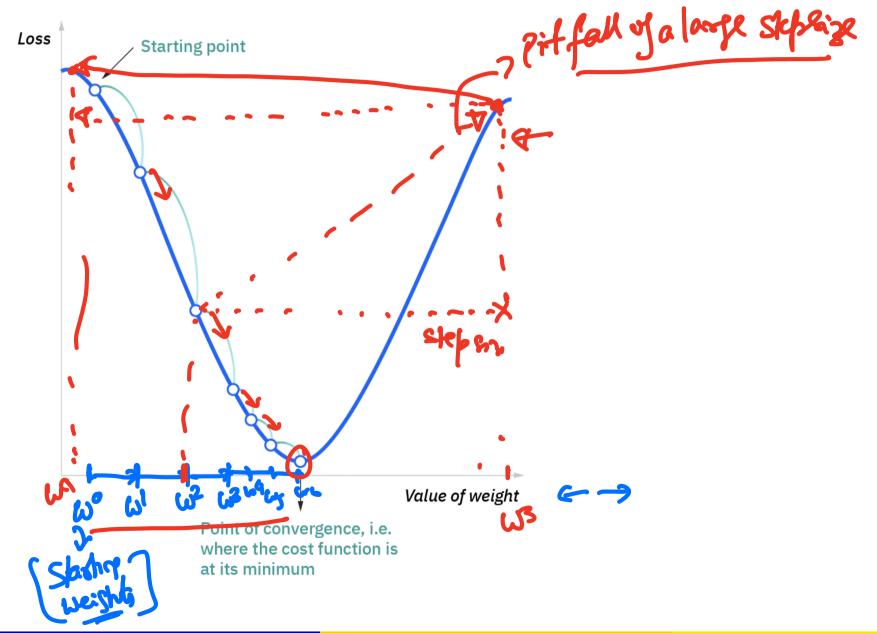
Batch Gradient Descent

Let us say we want to minimize L(w) - Loss Function and find the best \hat{w} that does that.

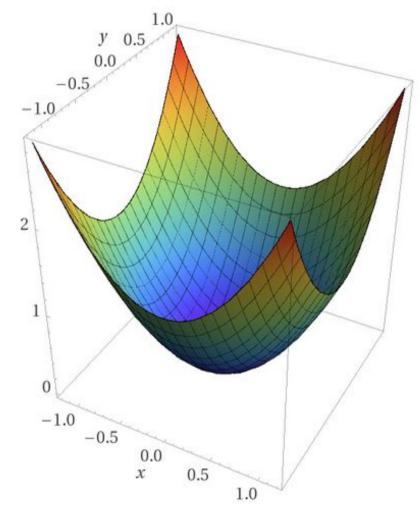
- **1 Initialize** $w = w_0$ (maybe randomize)
- **2** Gradient Descent $w \leftarrow w Ir * \nabla L(w)$
- **11 Iterate** Repeat step 2 until *w* converges, i.e.

$$||w^{k+1} - w^k|| / ||w^k|| \le 10^{-3}$$

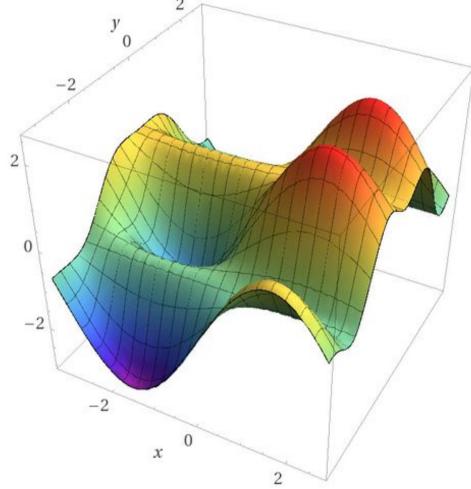
GD in one dimension



Loss function in 2 dimensions



Computed by Wolfram Alpha Computed by WolframjAlpha



ICE #3

Gradient of Ridge Regularizer (2 mins)

Find the gradient of the regularization function, $R(w) = \lambda ||w||_2^2$. I.e. obtain the expression for, $\nabla_w R(w)$?

- a) $2\lambda ||w||_2$
- b) $\lambda ||w||_2 w$
- c) $2\lambda w$
- d) $2\lambda ||w||_2 w$

ICE #3

Gradient of Ridge Regularizer (2 mins)

Find the gradient of the regularization function, $R(w) = \lambda ||w||_2^2$. I.e. obtain the expression for, $\nabla_w R(w)$?

- a) $2\lambda ||w||_2$
- b) $\lambda ||w||_2 w$
- c) $2\lambda w$
- d) $2\lambda ||w||_2 w$

In Assignment 2

We will have a question comparing GD and exact solution for Ridge Regression! Comparison on computation time and accuracy and how both the methods scale?

Gradient Descent Properties

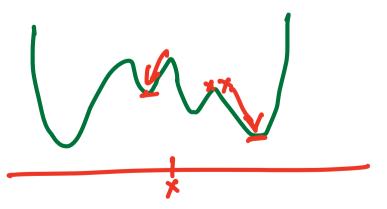
• Gradient Descent converges to a local minimum

Gradient Descent Properties

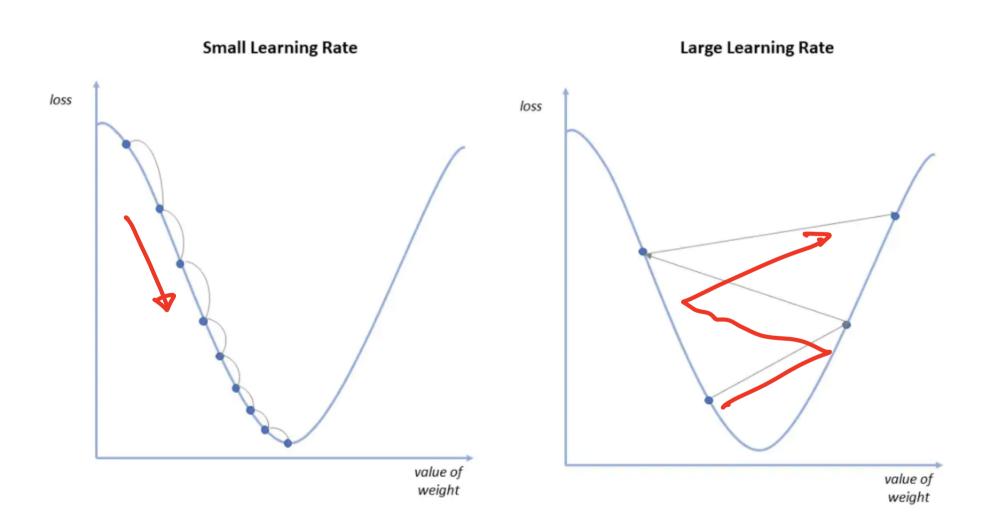
- Gradient Descent converges to a local minimum
- \bigcirc If L is a convex function, all local minima become a global minima!

Gradient Descent Properties

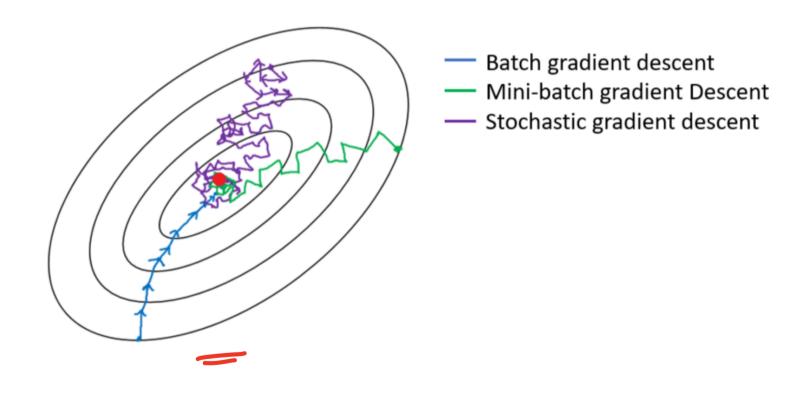
- Gradient Descent converges to a local minimum
- \bigcirc If L is a convex function, all local minima become a global minima!
- Wherever we start, gradient descent usually finds a local minima closest to the start.



Effect of Learning Rate



GD behavior in the search space



SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

• Initialize w^0 (randomize)

SGD

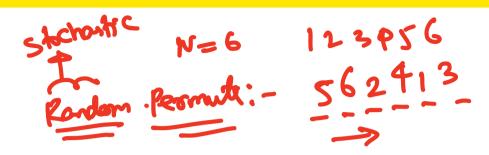
Let $L(w) = \sum_{i=1}^{w} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

1 Initialize w^0 (randomize) Pick index i at random between 1 and N!

SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

- Initialize w^0 (randomize) Pick index i at random between 1 and N!
- **2** Gradient Descent $w^{k+1} \leftarrow w lr * \nabla L_i(w^k)$



Pan = Going through the dataset once

e ith data noi

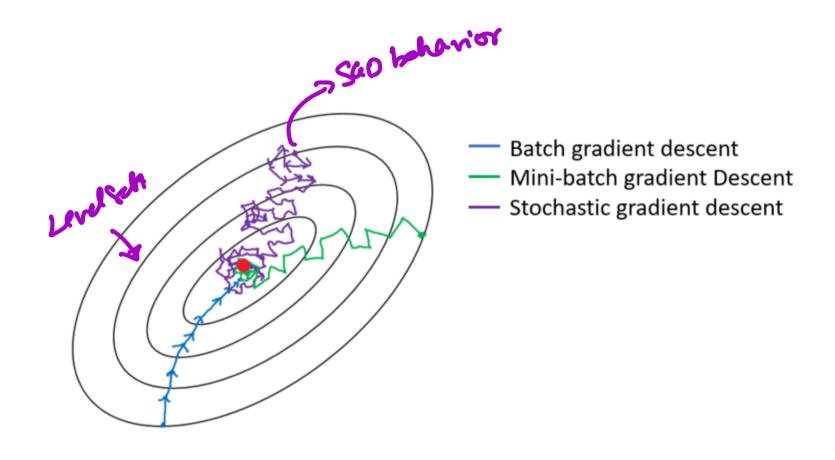
Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w.

• Initialize w^0 (randomize) Pick index i at random between 1 and N!)

Iterate Repeat step 2 and 3 until w converges, i.e.

$$||w^{k+1} - w^k|| / ||w^k|| \le 10^{-3}$$

SGD behavior in search space



SGD in practice - mini-batch SGD!

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

1 Initialize $w = w_0$ (randomize)

SGD in practice - mini-batch SGD!

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

Initialize $w = w_0$ (randomize) Pick a batch of k data points at random between 1 and N: i_1, i_2, \ldots, i_k !

SGD in practice - mini-batch SGD!

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

- **Initialize** $w = w_0$ (randomize) Pick a batch of k data points at random between 1 and N: i_1, i_2, \ldots, i_k !
- 2 Gradient Descent $w^{k+1} \leftarrow w^k Ir * \sum_{j=1}^k \nabla_w L_{i_j}(w^k)$ Leaving from k data

 [In Section 1.1]

 [In Section 2.2]

 [In Section

SGD in practice - mini-batch SGD!

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

Initialize $w = w_0$ (randomize) Pick a batch of k data points at random between 1 and N: i_1, i_2, \ldots, i_k !

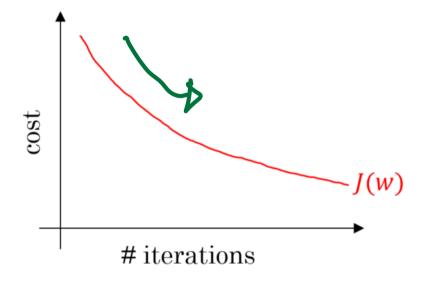
Gradient Descent $w^{k+1} \leftarrow w^k - Ir * \sum_{j=1}^k \nabla_w L_{i_j}(w^k)$

Iterate Repeat step 2 and 3 until w converges, i.e.

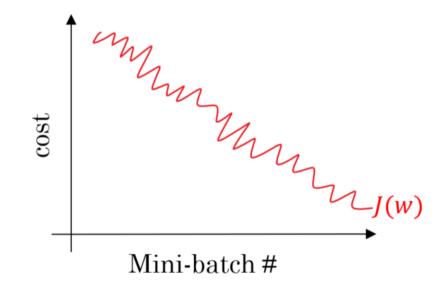
$$||w^{k+1} - w^k|| / ||w^k|| \le 10^{-3}$$

GD vs Mini-batch convergence behavior

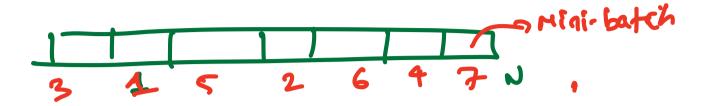
Batch gradient descent



Mini-batch gradient descent



GD vs mini-batch SGD



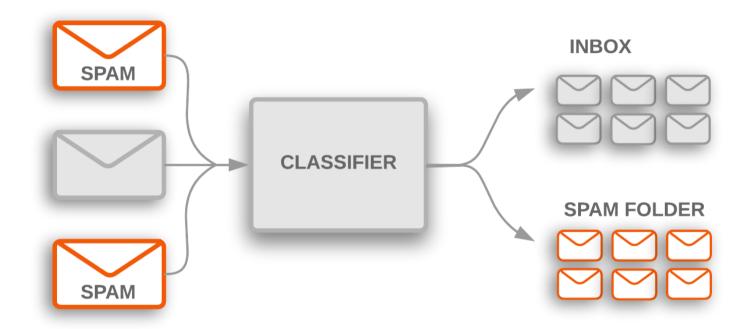
Factor	GD Mini-batch SGD		
Data	All per iteration	per iteration Mini-batch (usually 128 or 256)	
Randomness	<u>Determinis</u> tic	Stochastic	
Error reduction (🕍	Monotonic	St <u>ochas</u> tic	
Computation	High	Low	
Memory big data	Intractable	Tractable	
Convergence	Low relative error	Few "passes" on data	
Local Minima traps	Yes	No	

Mini-batch SGD "generaliza" better on Un-seen data than GO! Proof for Credical being direction of steady of the stead

Course Outline

Week	Lecture Material	Assignment	
1	Linear Regression	Housing Price Prediction	
2	Classification	Spam classification (Kaggle)	
3	Classification	Flower/Leaf classification	
4	Clustering	Clustering MNIST digits clustering	
5	Anomaly Detection	Crypto Prediction (Kaggle $+$ P)	
6	Data Visualization	ata Visualization $Crypto Prediction (Kaggle + P)$	
7	Deep Learning	Visualizing 1000 images	
8	Deep Learning (DL) ECG Arrythmia Detection		
9	DL in NLP	TwitterSentiment Analysis (Kaggle $+$ P)	
10	DLs in Vision	TwitterSentiment Analysis (Kaggle + P)	

Classification in Machine Learning



Difference between Classification and Regression

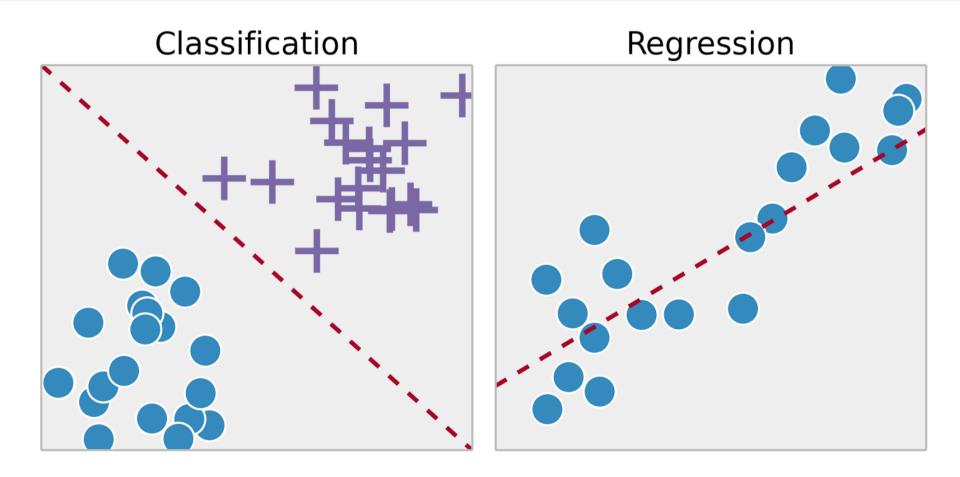
Simple difference

The target type in Regression is **numeric** whereas that in classification is **categorical**

Difference between Classification and Regression

Simple difference

The target type in Regression is **numeric** whereas that in classification is **categorical**



Types of Classification

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with multiple categories, we have a multi-class classification.

Types of Classification

Binary vs Multi-class classification

With binary categories, its a binary classification problem and with multiple categories, we have a multi-class classification.

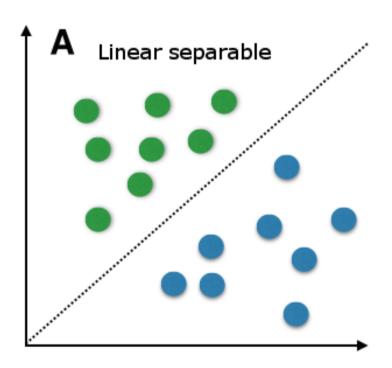
Target is called Label

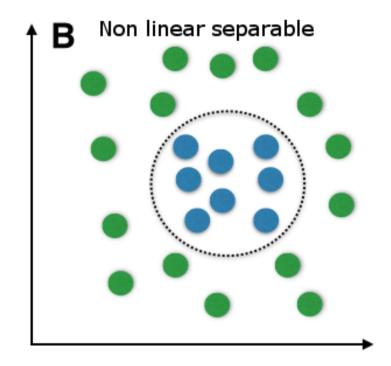
For binary classification, the convention is to label the target as positive or negative. Example: Positive for spam and negative for not-spam

Spam Classification Example

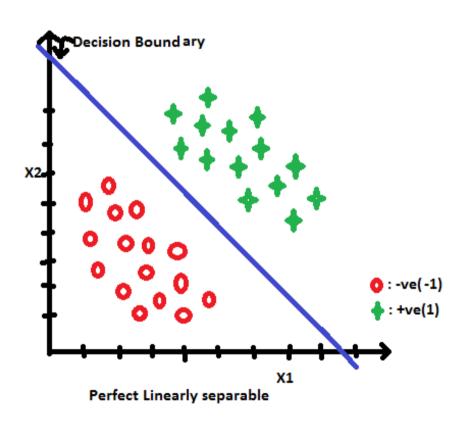
Email excerpt	Туре	Label
Could you please respond by tomorrow?	Not-spam	-1
Congratulations!!! You have been selected	Spam	+1
Looking forward to your presentation	Not-spam	-1

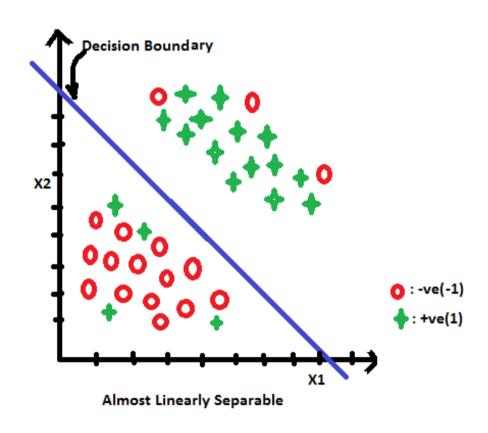
Linear Separability





Approximate Linear Separability

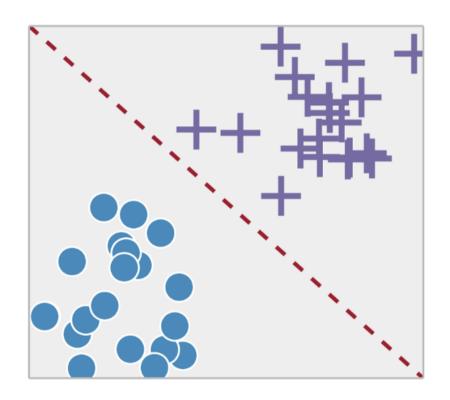




ICE #4

Which of the following data sets is the closest to being linearly separable?

Logistic Regression



LR fundamentals

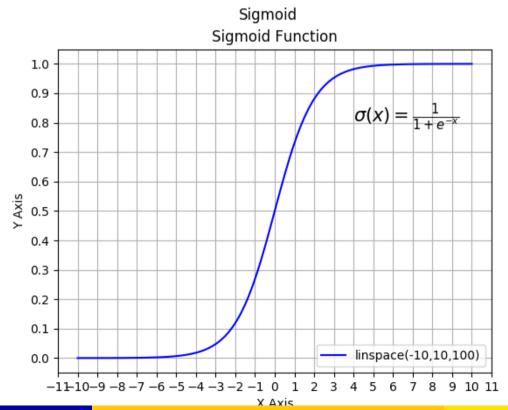
- Linear Model
- Want score $w^T x^i > 0$ for $y_i = +1$ and $w^T x_i < 0$ for $y_i = -1$!
- If linearly separable data, above is feasible. Else, minimize error in separability!!

Logistic Regression

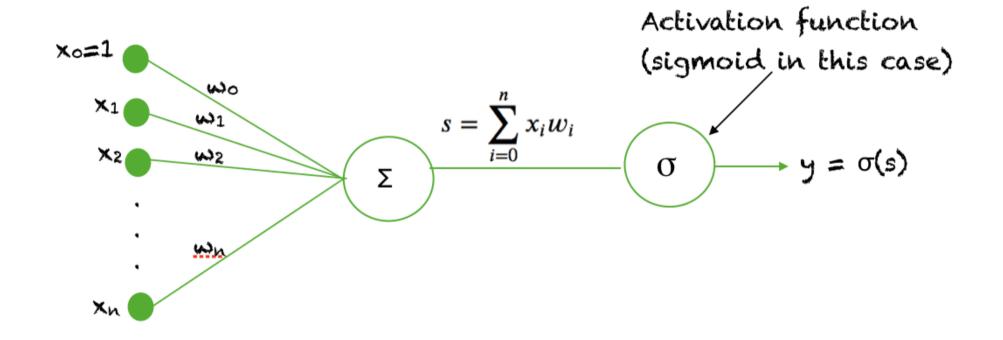
Probability for a class

In LR, the score, $w^T x$ is converted to a probability through the sigmoid function. So we can talk about $P(\hat{y^i} = +1)$ or $P(\hat{y^i} = -1)$

Sigmoid Function



LR represented Graphically



Logistic Regression

LR Prediction

$$\hat{y}_i = \frac{1}{1 + e^{-\hat{w}^T x^i}}$$

LR Loss

Assume that $y_i = 0$ or $y_i = 1$ (i.e. the negative class has a label 0). Then the binary cross-entropy loss applies to LR:

$$\min_{w} y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

Summary

- Why gradients are important?
- GD vs SGD vs Mini-batch SGD
- Why mini-batch SGD is preferred?
- Regression vs Classification
- Decision Boundary and Linear Separability
- Logistic Regression