EEP 596: Adv Intro ML || Lecture 6

Univ. of Washington, Seattle

January 24, 2023

Logistics

- Lightning Presentation Slot: Please pick a slot for your 5 minute lightning presentation this quarter if not done already. Spreadsheet available on discord
- **©** Conceptual 2: Assigned and due the coming Sunday
- Programming 3: Will be assigned today and will be a mini-project based on Kaggle contest - Due in about 2 weeks on February 4 (Saturday)
- Anything else?

Last class

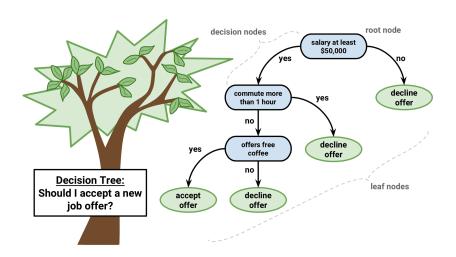
- How Logistic Regression differs from Linear Regression?
- Evaluation metrics for Binary Classification
- Opening Pre-processing and Feature engineering for Spam Classification
- Bag of words model
- TF-IDF

Today!

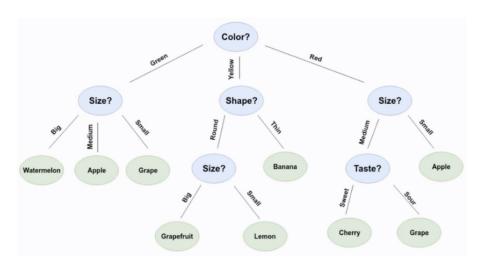
Decision Trees

Next Topic: Decision Trees Classifier

Decision Trees Motivation

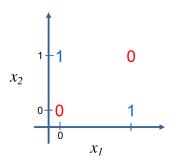


Decision Trees Motivation



ICE #1

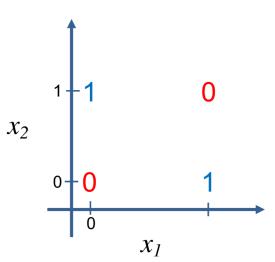
Can Logistic Regression learn to separate the 0's from the ones exactly?



- Yes
- O No
- Maybe

XOR Function

Linearly Separable?



XOR Function

Can XOR be modeled by Decision Tree?

• Human-like: We usually make decisions based on if/then and else/or scnearios. Example: If it is raining outside, it's not too cold and it's summer time - Let's go hiking. Example: If it's raining and it's winter, let's skip hiking.

- Human-like: We usually make decisions based on if/then and else/or scnearios. Example: If it is raining outside, it's not too cold and it's summer time Let's go hiking. Example: If it's raining and it's winter, let's skip hiking.
- Explainability: Medical AI is a good application area for Decision Trees. Example: Your AI model for health care predicts possible cancer from past health records and current CT scans. Both the patient and the doctor would like to know how the AI model arrived at this decision?

- Human-like: We usually make decisions based on if/then and else/or scnearios. Example: If it is raining outside, it's not too cold and it's summer time Let's go hiking. Example: If it's raining and it's winter, let's skip hiking.
- Explainability: Medical AI is a good application area for Decision Trees. Example: Your AI model for health care predicts possible cancer from past health records and current CT scans. Both the patient and the doctor would like to know how the AI model arrived at this decision?
- Non-linear Models: Decision Trees can easily model non-linear decision boundaries, unlike logistic regression. Modeling XOR or non-linear thinking in arriving at a decision.

- **Human-like:** We usually make decisions based on if/then and else/or scnearios. **Example:** If it is raining outside, it's not too cold and it's summer time Let's go hiking. **Example:** If it's raining and it's winter, let's skip hiking.
- Explainability: Medical AI is a good application area for Decision Trees. Example: Your AI model for health care predicts possible cancer from past health records and current CT scans. Both the patient and the doctor would like to know how the AI model arrived at this decision?
- Non-linear Models: Decision Trees can easily model non-linear decision boundaries, unlike logistic regression. Modeling XOR or non-linear thinking in arriving at a decision.
- **Non-parametric:** Decision trees don't have the standard *w* parameter vector/weight vector.

- Human-like: We usually make decisions based on if/then and else/or scnearios. Example: If it is raining outside, it's not too cold and it's summer time Let's go hiking. Example: If it's raining and it's winter, let's skip hiking.
- Explainability: Medical AI is a good application area for Decision Trees. Example: Your AI model for health care predicts possible cancer from past health records and current CT scans. Both the patient and the doctor would like to know how the AI model arrived at this decision?
- Non-linear Models: Decision Trees can easily model non-linear decision boundaries, unlike logistic regression. Modeling XOR or non-linear thinking in arriving at a decision.
- Non-parametric: Decision trees don't have the standard w parameter vector/weight vector.
- Robustness to noise: A few noisy examples in the data set may not through a decision tree prediction off - Based on majority votes.

Learning Decision Trees

Learning

The learning for Decision Trees boils down to how to build the tree. Which feature to split on first? Second? And so on... Also, when to stop building the tree

Learning Decision Trees

Learning

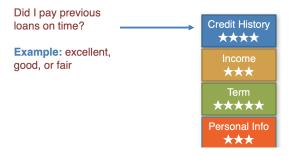
The learning for Decision Trees boils down to how to build the tree. Which feature to split on first? Second? And so on... Also, when to stop building the tree

Intuition behind building Decision Trees

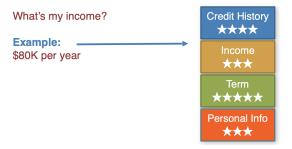
Start splitting on features that give the maximum information gain or reduce the uncertainty in prediction/reduce the classification error. This is done iteratively and hence can be thought of as a greedy procedure.

Case Study: What makes a loan risky?

Features: Credit History



Features: Income



Features: Loan Terms

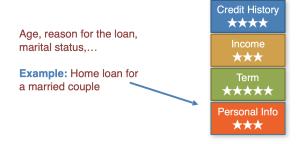
How soon do I need to pay the loan?

Example: 3 years, 5 years,...

Term

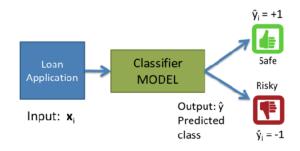
Personal Info

Features: Personal Information



Intelligent Loan Review System

Loan Classifier

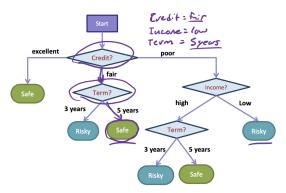


Sample Data

Data (N observations, 3 features)

Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Decision Trees



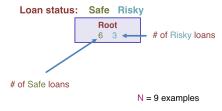
- Branch/Internal node: splits into possible values of a feature
- Leaf node: final decision (the class value)

Growing Trees

Questions

- Which features are "good"?
- When to stop growing a tree?

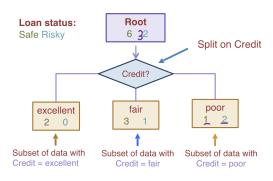
Visual Notation



Decision stump 1

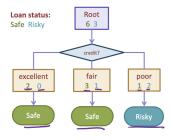
Data (N observations, 3 features)

Credit	Term		
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	safe
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe



Making predictions

For each leaf node, set \hat{y} = majority value

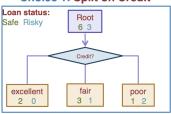


Split selection

How do we select the best feature?

Select the split with lowest classification error

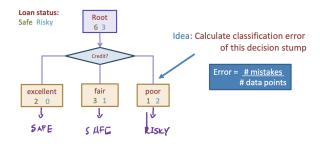
Choice 1: Split on Credit



Choice 2: Split on Term

Split Effectiveness

How do we measure effectiveness of a split?

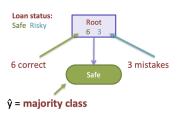


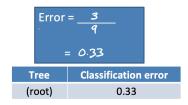
Calculate Classification Error

Calculating classification error

Step 1: \hat{y} = class of majority of data in node

Step 2: Calculate classification error of predicting ŷ for this data





Split on Credit

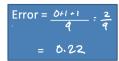
Choice 1: Split on Credit history?



Split on Credit

Split on Credit: Classification error





Tree	Classification error
(root)	0.33
Split on credit	0.22

Split on Term

Choice 2: Split on Term?

Choice 2: Split on Term

Split on Term

Evaluating the split on Term

Choice 2: Split on Term

Error =
$$\frac{1+2}{9}$$
 = $\frac{3}{9}$

Tree	Classification error
(root)	0.33
Split on credit	0.22
Split on term	0.33

Split Winner

Choice 1 vs Choice 2: Comparing split on credit vs term

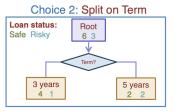
Tree	Classification error
(root)	0.33
split on credit	0.22
split on loan term	0.33

Choice 1: Split on Credit

Loan status:
Safe Risky
Root
6 3

Voredit?

Poor
1 2



Split selection

Split selection procedure

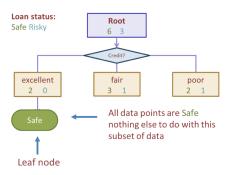
- Given a subset of data set, M at a node
- For each remaining feature $h_i(x)$, split M by feature $h_i(x)$ and compute classification error
- Pick the feature i to split with minimum classification error

Decision Tree Classification as a Greedy Procedure

DT Classifier Training procedure

If classification splits satisfy criteria (e.g. low classification error), stop, Else, split further using split selection procedure.

Stopping



Splits with few data points can lead to over-fitting. Example

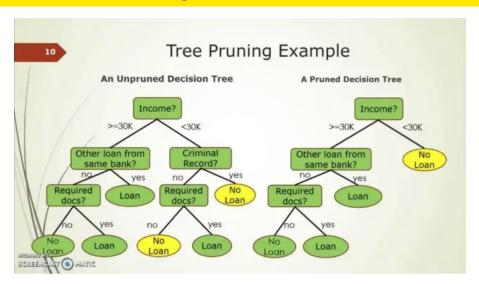
- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.

- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.
- Although theoretically, can aim for 0 classification error This would lead to over-fitting. Use above 2 to stop earlier.

- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.
- Although theoretically, can aim for 0 classification error This would lead to over-fitting. Use above 2 to stop earlier.
- No standard 'regularization' for DTs like for Logistic Regression. Why?

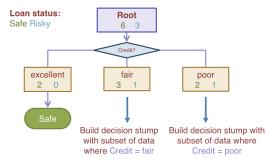
- Splits with few data points can lead to over-fitting. Example
- Max tree depth can be a stopping criteria to prevent over-fitting.
- Although theoretically, can aim for 0 classification error This would lead to over-fitting. Use above 2 to stop earlier.
- No standard 'regularization' for DTs like for Logistic Regression. Why?
- Pruning Can be done to prune branches that lead to over-fitting

Decision Trees Pruning

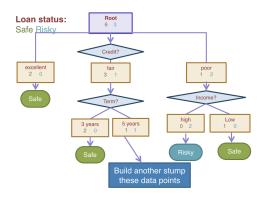


Tree Pruning Example Reference

Recursive Splits

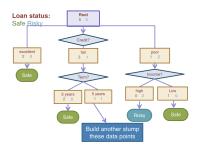


Second level DT



ICE #2

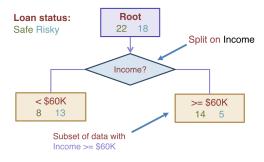
Classification error



The classification error for the DT above is:

- 0.33
- 0.11
- 0.22
- **(1)**

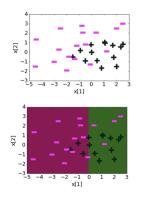
Threshold splits for real valued features

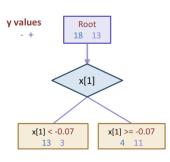


Choosing Split Threshold for Numeric Features

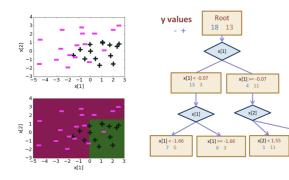
- Grid search?
- Numeric vs Categorical Features: Can recurse more than once on a numeric feature. Can't do the same for categorical feature. Why?

Decision Boundary level 1 | Numeric Features





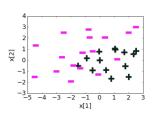
Decision Boundary level 2 | Numeric Features

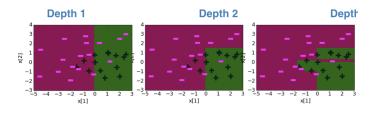


x[2] >= 1.55

Decision Boundary level 3 | Numeric Features

 Decision boundaries can be complex!





Decision Trees Summary

Summary

- Intuitive way to classify by making decisions by walking down the tree
- Can learn complex non-linear decision boundaries (unlike logistic regression)
- Prone to overfit as tree depth increases (unlike logistic regression)
- Splitting at nodes with few data points can lead to overfitting
- Over-fitting can be avoided by early stopping (depth or error)
- Improve Decision Trees Random Forests Next Lecture!

Objective to the second of the second of

- **1** Both are **interpretable** in different ways
- ② Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large

- Objective to the property of the property o
- ② Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large
- Decision Trees can easily learn non-linear decision boundaries while Logistic Regression learns linear decision boundary

- Objective to the second of the second of
- ② Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large
- Decision Trees can easily learn non-linear decision boundaries while Logistic Regression learns linear decision boundary
- Decision Tree has a higher model complexity as compared to Logistic Regression

- Objective to the second of the second of
- ② Decision trees mimick how humans make decisions and are useful in certain contexts - Like medical diagnosis or other places where number of features is not too large
- Decision Trees can easily learn non-linear decision boundaries while Logistic Regression learns linear decision boundary
- Decision Tree has a higher model complexity as compared to Logistic Regression
- Logistic Regression is less prone to over-fitting than Decision Trees with large number of features

Pitfalls of Decision Trees

Overfitting

Pitfalls of Decision Trees

- Overfitting
- Peature Engineering

Pitfalls of Decision Trees

- Overfitting
- Peature Engineering
- Not suitable for Regression

Overcoming pitfalls of Decision Trees - Random Forests

Random Forests Introduction

A Random Forest is a collection of T Decision Trees. Each decision tree casts a "vote" for a prediction and the ensemble predicts the majority vote of all of its trees.

