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Logistics

© Anything to discuss?
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| ast time

© Random forests

© Multi-class Classification
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oday

@ Conceptual Assignment Review/

@ Clustering overview _- 7

© kMeans _—
Q@ kMeans++4 |
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he clustering problem

of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 8 January 31, 2023 5/41



Clustering vs Classification

Clurtnng—  wpervind Lot

Difference =

In the classification problem, you are given (X",@(I.e. both the data
point / and its true label y; for training purposes. Example - a flower / and
its label (flower type). Whereas in clustering problem, you are just given
the data points, i.e. x'. However, you still want to break up the data
points into clusters - where each cluster has relatively similar data points.

y
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Clustering for News

What if the labels are known? Given labeled training data

B[B[C)

WORLD [, 9 a
NEWS | 207"

ENTERTAINMENT SCIENCE

Can do multi-class classification methods to predict label

WORLD
NEWS

ENTERTAINMENT

TECHNOLOGY
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Clustering Basics

In many real world contexts, there aren’t clearly defined labels
so we won't be able to do classification

We will need to come up with methods that uncover
structure from the (unlabeled) input data X.

Clustering is an automatic process of trying to find related
groups within the given dataset.

Input: x4, X3, ..., X, Output: z4,2,, ..., Zp,
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Clustering Basics

In their simplest form, a cluster is defined by

—

(Univ. of Washington, Seattle)

The location of its center f€entroid)

Shape and size of its spread

Clustering is the process of finding these clusters and assigning

each example to a particular cluster.
x; gets assigned z; € [1, 2, ..., k]

Usually based on closest centroid

Will define some kind of score for a
clustering that determines how good
the assignments are

Based on ¢@o assigned

examples tq each cluster
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I
Distance typically used

Euclidean Distance

Distance between two points, xi, X1 is given by:

[x1 — x2|2
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Clustering on different Data sets

Clustering is easy when distance captures the clusters

—
A

Ground Truth (not visible) Given Data

¥
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Clustering - Hard cases

There are many clusters that are harder to learn with this setup

Distance does not determine clusters
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k-means

Algorithm l@mgﬁs algorithm

1: Specity the number k of clusters to assign.

2: Randomly initialize k£ centroids.

3: repeat

4: expectation: Assign each point to its closest centroid.
5)

6

maximization: Compute the new centroid (mean) of each cluster.
.’ . . .
: until The centroid positions do not change.

e —
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k-means Clustering

Start by choosing the initial cluster centroids
A common default choice is to choose centroids at random

Will see later that there are smarter ways of initializing
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k-means Clustering

Assign each example to its closest cluster centroid
2

Z; < argmin ||uj — xi|
JE[K]
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k-means Clustering

Update the centroids to be the mean of all the points assigned to

that cluster.
>3
Hj n. Xi

) i:zi=j

Computes center of mass for cluster!
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k-means Clustering

Repeat Steps 1 and 2 until convergence

\Will it converge;kes! Stop when

Cluster assingments haven't
changed

Some number of max iterations
have been passed

What will it converge to?

Global optimum

( Local optirmm>

Neither

——
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k-means Demo

k-means Demo
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https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/

k-means Demo 2

k-means Demo 2
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https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

k-means optimization

X—Ded= Mahia
Loss Function
minc.a IX — ACI2
s.t. Al =1 .
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k-means optimization

| oss Function

minca |IX — AC|12
s.t. Al =1

ICE #1 Ppoxk

For k clusters, the dimensions of the assignments matrix A and the cluster
centroids matrix C are:

Q@ N xd&k xd
QO N x k&k x d
Q@ N x k&d x d
QO N xd&d x k
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Deeper Understanding: k-means optimization

&Tternating Optimization > lksnabwls, ophrige fis AL C

1
. sYmm
. > oy 1 [-HMean Alge -
minac | X — AC|2 7
S.t. Al =1 _
v
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Deeper Understanding: k-means optimization

Alternating Optimization

minac [ X — AC|2
s.t. Al =1

1. Optimizing A

Let's say we already have the cluster centroids matrix C/ in the jth
iteration. And we want to find the optimal assignment A given C/. Then,
we optimize:

ming || X — AC||%

s.t. Al =1

mina 3L, (X7 — AT C)?
S.t. Al =1
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k-means optimization

2. Optimizing C

Now that we have learned an assignment’s matrix A/, can we figure out
the new best centroids C/ 17

minc || X — A C||%
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k-means optimization

2. Optimizing C

Now that we have learned an assignment’s matrix A/, can we figure out
the new best centroids C/ 17

minc || X — A C||%

2. Optimizing C

Now that we have learned an assignment’s matrix A/, can we figure out
the new best centroids C/ 17

minc 3015, (X; — Cn)?

minc Y51 ity p(Xem, — Gp)?
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k-means

Algorithm 1 k-means algorithm

1: Specity the number k of clusters to assign.

2: Randomly initialize k£ centroids.

3: repeat

4: expectation: Assign each point to its closest centroid.

5.  maximization: Compute the new centroid (mean) of each cluster.
6: until The centroid positions do not change.
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Computational Complexity

Computational complexity of distance

Let x; be a data point and c¢; be a cluster centroid. Note both are in RY.
What's the computational complexity of evaluating |[x; — C1H2 How about
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Computational Complexity

Computational complexity of distance

Let x; be a data point and c¢; be a cluster centroid. Note both are in RY.
What's the computational complexity of evaluating ||x; — c1]|3 How about
[x1 — cf[1?

ICE #2 (3 mins)

Let X € RNV*9. Assume we want to find k clusters through k-means.
What is the average computational complexity of computing C and A
through k-means in termsof NV, d, k7 -

@ O(Nd)&O(kdN) O O ; o

O O(Nd)&O(dN)
@ O(Nd/K&O(dN) ., . .
O O(Nd/K)O(kiN) © L O@/’O Qe
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k-means Local Optima

What does it mean for something to converge to a local optima?

Initial settings will greatly impact results!
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I
Improving kMeans - kMeans++

Making sure the initialized centroids are “good” is critical to finding
quality local optima. Our purely random approach was wasteful
since it's very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

—

Choose first cluster y, from the data uniformly at random

For the current set of centroids (starting with just u,),
compute the distance between each datapoint and its closest
centroid

Choose a new centroid from the remaining data points with
probability of x; being chosen proportional to d(x;)?

Repeat 2 and 3 until we have selected k centroids
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I
Improving kMeans - kMeans++

Start by picking a point at random

Then pick points proportional to their distances to their centroids

This tries to maximize the spread of the centroids!
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

© C(lusters make sense if cluster division makes sense based on
Euclidean distance.
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

© C(lusters make sense if cluster division makes sense based on
Euclidean distance.

© k-means has a computational compIeX|ty of O(Nd) for C step and
O(Nkd) for A step
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

(2]
© k-means has a computational complexity of O(Nd) for C step and
(%)
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

k-means has a computational complexity of O(Nd) for C step and
O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

© © o6 ©

k-means++ - Improvement on k-means and vyields better quality
clusters
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

k-means has a computational complexity of O(Nd) for C step and
O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

k-means++ - Improvement on k-means and vyields better quality
clusters

© 0 © o ©

Both k-means and_k-means++ suffer from the clusters being
spherical in nature. What if the true cluster shapes look different?
Next lecture: Kernel k-means and ?nglomerative cIustering?
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

k-means has a computational complexity of O(Nd) for C step and
O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

k-means++ - Improvement on k-means and vyields better quality
clusters

© 0 © o ©

Both k-means and k-means++ suffer from the clusters being
spherical in nature. What if the true cluster shapes look different?

Next lecture: Kernel k-means and Agglomerative clustering!
@ Clustering can help with cdld-start problem.)E.g. recommending new
products! —
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I
Clustering in 2 dimensions - tSNE!
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Clustering for Data Visualization

Images

Let's say we had 1000 images and wanted to "cluster’ them onto a
super-grid of images so that similar images are closely placed on the
super-grid and dis-similar are placed further away. k-means clustering will

only get us half-way there!
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Data Visualization: Stochastic Neighborhood Embeddings
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SNE

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close
to each other and dis-similar images further away from each other.

(Univ. of Washington, Seattle)
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SNE

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close
to each other and dis-similar images further away from each other.

y

Soft clustering

We don't have a K here. But if you look at any neighborhood of the super
grid of images - They will look similar! We can call this soft-clustering.
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e
SNE

Similarity measure through Probabilities

Let x1, X2, ... represent features of the data in their original dimensions
(e.g. images).

e_HXi_XjH%/20i2

Pjli = 2 /52
Jl Zk;& e—”x,-—kaz/Zai
1
y
(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 8 January 31, 2023 33 /41




e
SNE

Similarity measure through Probabilities

Let x1, X2, ... represent features of the data in their original dimensions
(e.g. images).

e_HXi_XjH%/20i2

> i e lIxi—xk|3/207

Pili =

Low-dimensional embedding Probabilities

Let yi1, yo,... represent features of the data in lower (embedded)
dimensions (e.g. 2 dimensions).

e_H)/i_YJH%/zO-?

>y e inl3/207

i =
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Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

d
Pi
KL(pllq) =) pilog o
i=1 ’
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Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

d
Pi
KL(pllq) =) pilog o
i=1 ’

v
Loss function
N
L — S KL(P|| Q) = log A1
(y17y27"'7yN)_ ( IH l)_ Pj|i 108 —
i=1 i 9l
y
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e
Gradient and GD

Gradient
oL
dy; =2 E :(Pj\i — qgjli T Pi|j — Qi\j)()/i — ¥j)
I .
J
y
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e
Gradient and GD

Gradient
oL
By =2 Z(Pj\i — qgjli T Pi|j — Qi\j)()/i — ¥j)
J
y
GD
t+1 t
y'" =yt - 77 (y )
v
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Image Chain

ICE #1 (3 mins break out)

Let's say you want to create a video that has 1000 images (e.g. the one
we looked at earlier) in a sequence so that the images in the video
transforms smoothly from one to the next. How would you go about doing
this if you learned a tSNE representation for the images?
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How do we create this grid?
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I
tSNE Notebook Example

Notebook

(Univ. of Washington, Seattle)
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https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook

MNIST digits data set
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tSNE embeddings

MNIS
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Word visualization based on word2vec
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