EEP 596: Adv Intro ML || Lecture 8 Dr. Karthik Mohan

Univ. of Washington, Seattle

January 31, 2023

Anything to discuss?

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 8 Janua

- Random forests
- Multi-class Classification

- Conceptual Assignment Review //
- Olustering overview
- 8 kMeans
- 🕘 kMeans++ 🦯 📃

The clustering problem

Clustering vs Classification

Difference

In the classification problem, you are given (x^i, y_i) - I.e. both the data point *i* and its true label y_i for training purposes. Example - a flower *i* and its label (flower type). Whereas in clustering problem, you are just given the data points, i.e. x'. However, you still want to break up the data points into clusters - where each cluster has relatively similar data points.

Clustering for News

What if the labels are known? Given labeled training data

Can do multi-class classification methods to predict label

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

Clustering Basics

- In many real world contexts, there aren't clearly defined labels so we won't be able to do classification
- We will need to come up with methods that uncover structure from the (unlabeled) input data X.
- Clustering is an automatic process of trying to find related groups within the given dataset.

Clustering Basics

In their simplest form, a **cluster** is defined by

- The location of its center (centroid)
- Shape and size of its spread

Clustering is the process of finding these clusters and **assigning** each example to a particular cluster.

- x_i gets assigned $z_i \in [1, 2, ..., k]$
- Usually based on closest centroid

Will define some kind of score for a clustering that determines how good the assignments are

 Based on distance of assigned examples to each cluster
 Fur hala
 Distance

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

Distance typically used

Euclidean Distance

Distance between two points, x_1, x_1 is given by:

 $||x_1 - x_2||_2$

Clustering on different Data sets

Clustering is easy when distance captures the clusters

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

Clustering - Hard cases

There are many clusters that are harder to learn with this setup

Distance does not determine clusters

Algorithm 1(k) means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: maximization: Compute the new centroid (mean) of each cluster.

ſ

6: **until** The centroid positions do not change.

~

Start by choosing the initial cluster centroids

- A common default choice is to choose centroids at random
- Will see later that there are smarter ways of initializing

Assign each example to its closest cluster centroid

$$z_i \leftarrow \operatorname*{argmin}_{j \in [k]} \left| \left| \mu_j - x_i \right| \right|^2$$

Update the centroids to be the mean of all the points assigned to that cluster.

$$u_j \leftarrow \frac{1}{n_j} \sum_{i: z_i = j} x_i$$

Computes center of mass for cluster!

Repeat Steps 1 and 2 until convergence

Will it converge? Yes! Stop when

- Cluster assignments haven't changed
- Some number of max iterations have been passed

What will it converge to?

Global optimum

k-means Demo

(Univ. of Washington, Seattle) EEP 596

EEP 596: Adv Intro ML || Lecture 8

January 31, 2023

k-means Demo 2

k-means Demo 2

k-means optimization

Loss Function

$$\begin{array}{ll} \min_{\mathcal{C},\mathcal{A}} & \|X - \mathcal{A}\mathcal{C}\|_F^2 \\ \text{s.t.} & \mathcal{A}\mathbf{1} = \mathbf{1} \end{array}$$

Xwxd

ICE #1

For k clusters, the dimensions of the assignments matrix A and the cluster centroids matrix C are:

$$N \times d\&k \times d$$

- $N \times k\&k \times d$
- $N \times k\&d \times d$
- $I \times d\&d \times k \ _$

Deeper Understanding: k-means optimization

Alternating Optimization

$$\min_{A,C} ||X - AC||_F^2$$

s.t. $A\mathbf{1} = \mathbf{1}$
 $Alkonabuely Optimize for Afc
gives us k-Mean Algorithm?$

Deeper Understanding: k-means optimization

Alternating Optimization

$$\begin{array}{ll} \min_{A,C} & \|X - AC\|_F^2 \\ \text{s.t.} & A\mathbf{1} = \mathbf{1} \end{array}$$

1. Optimizing A

Let's say we already have the cluster centroids matrix C^{j} in the *jth* iteration. And we want to find the optimal assignment A^{j} given C^{j} . Then, we optimize:

$$\begin{array}{ll} \min_{A} & \|X - AC^{j}\|_{F}^{2} \\ \text{s.t.} & A\mathbf{1} = \mathbf{1} \end{array}$$

$$\min_{A} \sum_{i=1}^{N} (X_i^T - A_i^T C^j)^2$$
s.t.
$$A\mathbf{1} = \mathbf{1}$$

2. Optimizing C

Now that we have learned an assignment's matrix A^{j} , can we figure out the new best centroids C^{j+1} ?

$$\min_C \|X - A^j C\|_F^2$$

2. Optimizing C

Now that we have learned an assignment's matrix A^{j} , can we figure out the new best centroids C^{j+1} ?

$$\min_{C} \|X - A^{j}C\|_{F}^{2}$$

2. Optimizing C

Now that we have learned an assignment's matrix A^{j} , can we figure out the new best centroids C^{j+1} ?

$$\min_C \quad \sum_{i=1}^N (X_i - C_{n_i})^2$$

$$\min_{C} \sum_{p=1}^{K} \sum_{i=1}^{N} {}_{p} (X_{m_{i}} - C_{p})^{2}$$

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: maximization: Compute the new centroid (mean) of each cluster.
- 6: until The centroid positions do not change.

Computational Complexity

Computational complexity of distance

Let x_1 be a data point and c_1 be a cluster centroid. Note both are in \mathcal{R}^d . What's the computational complexity of evaluating $||x_1 - c_1||_2^2$ How about $||x_1 - c_1||_1$? $= |X_{11} - (11) + |X_{12} - (12) +$ ---+ (Xnd-Gd) $\approx \circ(d)$ Comp w $(\chi_{11}-\zeta_{11})^{2} + (\chi_{12}-\zeta_{12})^{2}$ $||\chi_{1} - \zeta_{1}||^{2} =$ = o(d) (comp. complexity

EEP 596: Adv Intro ML || Lecture 8

Computational Complexity

Computational complexity of distance

Let x_1 be a data point and c_1 be a cluster centroid. Note both are in \mathcal{R}^d . What's the computational complexity of evaluating $||x_1 - c_1||_2^2$ How about $||x_1 - c_1||_1^2$?

ICE #2 (3 mins)

Let $X \in \mathcal{R}^{N \times d}$. Assume we want to find k clusters through k-means. What is the average computational complexity of computing C and A through k-means in terms of N, d, k?

C: Ofter

- O(Nd)&O(kdN)
- O(Nd)&O(dN)
- O(Nd/k)&O(dN)
- $\bigcirc O(Nd/k)O(kdN)$

k-means Local Optima

What does it mean for something to converge to a local optima?

Initial settings will greatly impact results!

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

Making sure the initialized centroids are "good" is critical to finding quality local optima. Our purely random approach was wasteful since it's very possible that initial centroids start close together.

Idea: Try to select a set of points farther away from each other.

k-means++ does a slightly smarter random initialization

- 1. Choose first cluster μ_1 from the data uniformly at random
- 2. For the current set of centroids (starting with just μ_1), compute the distance between each datapoint and its closest centroid
- 3. Choose a new centroid from the remaining data points with probability of x_i being chosen proportional to $d(x_i)^2$
- 4. Repeat 2 and 3 until we have selected k centroids

Start by picking a point at random

Then pick points proportional to their distances to their centroids

This tries to maximize the spread of the centroids!

 k-means - A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Clusters make sense if cluster division makes sense based on Euclidean distance.
- 3 k-means has a computational complexity of O(Nd) for C step and O(Nkd) for A step

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.
- In the second step and the second step and
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.
- In the second step of the second step and the second step and the second step of the s
- Ounter examples of clusters that may not be clustered well by k-means. Can use other methods for this.
- Improvement on k-means and yields better quality clusters

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.
- Solution O(Nkd) for A step and O(Nkd) for A step and O(Nkd) for A step
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.
- Improvement on k-means and yields better quality clusters
- Soth k-means and k-means++ suffer from the clusters being spherical in nature. What if the true cluster shapes look different? Next lecture: Kernel k-means and Agglomerative clustering!

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.
- Solution O(Nkd) for A step and O(Nkd) for A step and O(Nkd) for A step
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.
- Improvement on k-means and yields better quality clusters
- Soth k-means and k-means++ suffer from the clusters being spherical in nature. What if the true cluster shapes look different? Next lecture: Kernel k-means and Agglomerative clustering!
- Clustering can help with cold-start problem. E.g. recommending new products!

Clustering in 2 dimensions - tSNE!

Images

Let's say we had 1000 images and wanted to "cluster" them onto a super-grid of images so that similar images are closely placed on the super-grid and dis-similar are placed further away. k-means clustering will only get us half-way there!

Data Visualization: Stochastic Neighborhood Embeddings (SNE)!

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

January 31, 2023

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

Soft clustering

We don't have a *K* here. But if you look at any neighborhood of the super grid of images - They will look similar! We can call this soft-clustering.

SNE

Similarity measure through Probabilities

Let x_1, x_2, \ldots represent features of the data in their original dimensions (e.g. images).

$$p_{j|i} = rac{e^{-\|x_i - x_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|_2^2/2\sigma_i^2}}$$

Similarity measure through Probabilities

Let x_1, x_2, \ldots represent features of the data in their original dimensions (e.g. images).

$$p_{j|i} = rac{e^{-\|x_i - x_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|_2^2/2\sigma_i^2}}$$

Low-dimensional embedding Probabilities

Let y_1, y_2, \ldots represent features of the data in lower (embedded) dimensions (e.g. 2 dimensions).

$$q_{j|i} = \frac{e^{-\|y_i - y_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|y_i - y_k\|_2^2/2\sigma_i^2}}$$

Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

$$\mathit{KL}(p||q) = \sum_{i=1}^d p_i \log rac{p_i}{q_i}$$

Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

$$\mathit{KL}(p||q) = \sum_{i=1}^d p_i \log rac{p_i}{q_i}$$

Loss function

$$L(y_1, y_2, \dots, y_N) = \sum_{i=1}^N KL(P_i || Q_i) = \sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Gradient and GD

Gradient

$$\frac{\partial L}{\partial y_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

Gradient and GD

Gradient

$$\frac{\partial L}{\partial y_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

GD

$$y^{t+1} = y^t - \eta \frac{\partial L}{\partial y}(y^t)$$

EEP 596: Adv Intro ML || Lecture 8

ICE #1 (3 mins break out)

Let's say you want to create a video that has 1000 images (e.g. the one we looked at earlier) in a sequence so that the images in the video transforms smoothly from one to the next. How would you go about doing this if you learned a tSNE representation for the images?

How do we create this grid?

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

January 31, 2023

tSNE Notebook Example

Notebook

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

January 31, 2023

0000000000000000000 / \ \ \ / 1 / 1 / 7 1 / / / / | 222222222222222 66666666666666666 ファチョアファファファファファ 88888888888888888888 999999999999999999999

MNIST tSNE embeddings

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 8

January 31, 2023 40 / 41

Word visualization based on word2vec

