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© Clustering k-means recap
© Clustering Agglomerative Clustering
© Data Visualization(tSNE for Data Visualization
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

(2]
© k-means has a computational complexity of O(Nd) for C step and
(%)
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

k-means has a computational complexity of O(Nd) for C step and
O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

© © o6 ©

k-means++ - Improvement on k-means and vyields better quality
clusters
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k-means summary

o

© 0 © o ©

k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

k-means has a computational complexity of O(Nd) for C step and
O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

k-means++ - Improvement on k-means and vyields better quality
clusters

Both k-means and k-means++ suffer from the clusters being
spherical in nature. What if the true cluster shapes look different?
Next lecture: Kernel k-means and\Agglomerative clustering!
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k-means summary

© k-means - A generic clustering algorithm that can take N data points
and group them into K clusters based on Euclidean distance.

Clusters make sense if cluster division makes sense based on
Euclidean distance.

k-means has a computational complexity of O(Nd) for C step and
O(Nkd) for A step

Counter examples of clusters that may not be clustered well by
k-means. Can use other methods for this.

k-means++ - Improvement on k-means and vyields better quality
clusters

© 0 © o ©

Both k-means and k-means++ suffer from the clusters being
spherical in nature. What if the true cluster shapes look different?
Next lecture: Kernel k-means and Agglomerative clustering!

@ Clustering can help with cold-start problem. E.g. recommending new
products!
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I
Clustering in 2 dimensions - tSNE!
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Clustering for Data Visualization

Images

Let's say we had 1000 images and wanted to "cluster’ them onto a
super-grid of images so that similar images are closely placed on the
super-grid and dis-similar are placed further away. k-means clustering will

only get us half-way there!
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Data Visualization: Stochastic Neighborhood Embeddings
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SNE
\/\I\J ‘
(p chwhe  Neishoaho o
- — _—
High-level Idea N~

Find an embedding of images in 2 dimensions that put similar images close
to each other and dis-similar images further away from each other.

y
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SNE

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close
to each other and dis-similar images further away from each other.

Soft clusterin

We don't have a K here. But if you look at any(neigh
grid of images - They will look similar! We can ca

y
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SNE

Similarity measure through Probabilities

)

Let x1, X2, ... represent features of the data in their original dimensions
(e.g. images). (-\r\(_\? EM(A Dinfen®
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e
SNE

Similarity measure through Probabilities

Let x1, X2, ... represent features of the data in their original dimensions
(e.g. images). — 7<C‘l(?<j i Ve (n
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Low-dimensional embedding Probabilities

Let y1, o, ... represent features of the data in lower (embedded) "
dimensions (e.g. 2 dimensions)., — \)19<l7\) ager
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MNIST digits data set
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PCA on MNIS

2 component PCA
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tSNE embeddings

MNIS
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Estimating low-dimensional embeddings in SNE
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Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

d
Pi
KL(pllq) = E pi Iog;
.:1 |

Loss function
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e
Gradient and GD

Gradient
oL
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Image Chain

ICE #1 (3 mins break out)

Let's say you want to create a video that has 1000 images (e.g. the one
we looked at earlier) in a sequence so that the images in the video
transforms smoothly from one to the next. How would you go about doing
this if you learned a tSNE representation for the images? )
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How do we create this grid?
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.
tSNE Notebook Examples

Notebook
Fashion MNIST Notebook
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https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook
https://medium.com/analytics-vidhya/using-t-sne-for-data-visualisation-8a83f46fbad3

Word visualization based on word2vec
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Hierarchical Clustering
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Example of Hierarchy: Nouns

Lots of data is hierarchical by nature
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Example of Hierarchy: Species
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Motivation for Hierarchical Clustering

If we try to learn clusters in hierarchies, we can

Avoid choosing the # of clusters beforehand (K ‘>

Use dendrograms to help visualize different granularities of

clusters

Allow us to use any distance metric
K-means requires Euclidean distance

Can often find more complex shapes than k-means

P
Ve /5?\
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S
Different shapes — Different algorithms

k-means 2‘ J’\“ﬂf’h

“he |

Hierarchical Clustering
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I
ypes of Hierarchical Algorithms

b

Start with all the data in one big cluster and then recursively
split the data into smaller clusters
Example: recursive k-means

Divisive, a.k.a. top-down

-

Agglomerative, a.k.a. bottom-up: 4]>

- Start with each data point in its own cluster. Merge clusters
until all points are in one big cluster.

Example: single linkage
T
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Divisive Clustering

Start with all the data in one cluster, and then run k-means to
divide the data into smaller clusters. Repeatedly run k-means on
each cluster to make sub-clusters.

‘@
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I
Wikipedia Example

Using Wikipedia

Wikipedia
Wikipedi
ikipe |a\
— Athletes Non-athletes
==
Wikipedia
P ~
Athletes Non-athletes
N /
Baseball Soccer/ Musicians, Scholars, politicians,
Ice hockey artists, actors government officials
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Hyper-parameters for Divisive Clustering

For decisive clustering, you need to make the following choices:
Which algorithm to use
How many clusters per split

When to split vs when to stop
Max cluster size
Number of points in cluster falls below threshold
Max cluster radius
distance to furthest point falls below threshold

Specified # of clusters
split until pre-specified # of clusters is reached
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I
Agglomerative Clustering

( Algorithm at a glance

Initialize each point in its own cluster

e ———
o ee——

Define a distance metric between clusters

—

- B

@hile there is more than one clus@

\/ Merge the two closest clusters

-
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S
Agglomerative Clustering: Step 1

7‘
1. Initialize each point to be its own cluster LA+ inl oY)
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Agglomerative Clustering: Step 2
\»X‘?‘;"\\A

§

. \01\ 2. Define a distance metric between clusters
e = —=
/\/ M(,h @ Single Linkage
;) o) distance(C,,C,) = min_ d(x;,x;)
@ (\\\\!/Jﬁ)’j . X iECl,x 'ECZ vl
\\ — ’
L

This formula means we are defining the distance between two
clusters as the smallest distance between any pair of points
between the clusters.
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Agglomerative Clustering: Step 3

Merge closest pair of clusters

..OOQQ.O..hOQ.

-
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Agglomerative Clustering: Repeat
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Agglomerative Clustering: Repeat

Notice that the height of the dendrogram is growing as we group
points farther from each other

M ........ﬁ:%?..
%mrg—:? )OO O ¢
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S
Agglomerative Clustering: Repeat
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Agglomerative Clustering: Repeat

Looking at the dendrogram, we can see there is a bit of an outlier!

Q Can tell by seeing a point join a
cluster with a really large distance.

nlllla=al
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I
Agglomerative Clustering: Repeat

The tall links in the dendrogram show us we are merging clusters
that are far away from each other

g P

RIRIRlyrv=—ul
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I
Agglomerative Clustering: Repeat

Final result after merging all clusters

4

Dlia=ail

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 9 February 2, 2023 37 /53




I
Agglomerative Clustering: Spiral and Donut!

With agglomerative clustering, we are now very able to learn
- - - /
weirder clusterings like

—

~
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Dendrogram

x-axis shows the datapoints (arranged in a very particular order)

y-axis shows distance between pairs of clusters

Height here indicates min O (O
® o o

J distance between blue

[ pts and
Cluster (2 clusters) °
distance M Q. .
-— ) . O
{ I He Sh?r \GJ\U W .‘ O
= DI k) O
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Data points
———
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Dendrogram

x-axis shows the datapoints (arranged in a very particular order)

y-axis shows distance between pairs of clusters

Cluster
distance

(Univ. of Washington, Seattle)
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I
Cut Dendrogram

Choose a distance D* to “cut” the dendrogram
Use the largest clusters with distance <£

Usually ignore the idea of the nested clusters after cutting

D*
Cluster |~ " [ """ " 7
distance
Data points
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I
Dendrogram ICE

ICE #2
How many clusters would we have if we use this threshold to cut?
4

© 00O

5
6
2

D*
Cluster

distance

Data points
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I
Cut Dendrogram

Every branch that crosses D* becomes its own cluster

D*
Cluster
distance

(Univ. of Washington, Seattle)

Data points
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Agglomerative Clustering — Hyper-parameters

For agglomerative clustering, you need to make the following
choices:

Distance metric d(x,;, xj)

Linkage function
Single Linkage:
xiegnl,g}ecz (2 xj)

Complete Linkage:

max d(x,;, xj)
xiECl,ijCZ

Centroid Linkage !
d(py, H2) O*

Others Cluster
distance

Where and how to cut dendrogram

Data points
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Linkage examples

Sungle Liunkage Complete Lunkage
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S
Dendrogram ICE

ICE #3

Which linkage function is more likely to detect spiral clusters?
Single Linkage

Centroid Linkage

Complete Linkage

© 00 O

Any Linkage

(Univ. of Washington, Seattle)
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I
Centroid Linkage Applied to Spiral

With agglomerative clustering, we are now very able to learn
weirder clusterings like
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S
Single Linkage Applied to Spiral

With agglomerative clustering, we are now very able to learn
weirder clusterings like
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I
Where Centroid Linkage Works!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML || Lecture 9 February 2, 2023 49 /53




Dunn Index - Metric that measures goodness of clusters

Dunn Index

mini<j<j<k d(i,J)
maxi<j<k d'(j)

D =

(Univ. of Washington, Seattle)
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Dunn Index - Metric that measures goodness of clusters

Dunn Index
mini<j<j<k d(i,J)

D = :
maxi<j<k d'(j)

ICE #4

Say you had a single-linkage and k-means clustering applied to a data set
to produce K clusters each. Call them A and B. When would you say
single-linkage produces better clustering than k-means?

@ D(A) > D(B)

O D(B) > D(A)
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Dendrogram

For visualization, generally a smaller # of clusters is better

For tasks like outlier detection, cut based on:
Distance threshold

Or some other metric that tries to measure how big the
distance increased after a merge

No matter what metric or what threshold you use, no method is
“incorrect”. Some are just more useful than others.
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Dendrogram

Computing all pairs of distances is pretty expensive!

A simple implementation takes O(n?log(n))

Can be much implemented more cleverly by taking advantage of
the triangle inequality

“Any side of a triangle must be less than the sum of its sides”

Best known algorithm is 0(n?)
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Comparison of Clustering Algorithms

Quick comparison

k-means | Agglomerative Clustering
Computation | O(Ndk) O(N?d)
Type | Spherical Arbitrary shapes

Few more points..

@ Weigh computational complexity with complexity of clustering -

kmeans vs agglomerative

O Agglomerative distance choices yield different sets of clusters (single
linkage vs centroid)

@ Clustering in practice is an art

© However, quality of clustering can be evaluated - E.g. through Dunn

Index!
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