EEP 596: Adv Intro ML || Lecture 9 Dr. Karthik Mohan

Univ. of Washington, Seattle

February 2, 2023

Last time

- Clustering k-means recap
- Oustering Agglomerative Clustering
- Oata Visualization tSNE for Data Visualization

 k-means - A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Clusters make sense if cluster division makes sense based on Euclidean distance.
- 3 k-means has a computational complexity of O(Nd) for C step and O(Nkd) for A step

4 / 53

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.
- In the second step of the second step and the second step and the second step of the s
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Olusters make sense if cluster division makes sense based on Euclidean distance.
- In the second step of the second step and the second step and the second step of the s
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.
- Improvement on k-means and yields better quality clusters

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Clusters make sense if cluster division makes sense based on Euclidean distance.
- In the second step of the second step and the second step and the second step of the s
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.
- Improvement on k-means and yields better quality clusters
- Soth k-means and k-means++ suffer from the clusters being spherical in nature. What if the true cluster shapes look different? Next lecture: Kernel k-means and Agglomerative clustering!

- k-means A generic clustering algorithm that can take N data points and group them into K clusters based on Euclidean distance.
- Clusters make sense if cluster division makes sense based on Euclidean distance.
- Solution O(Nkd) for A step and O(Nkd) for A step and O(Nkd) for A step
- Counter examples of clusters that may not be clustered well by k-means. Can use other methods for this.
- Improvement on k-means and yields better quality clusters
- Soth k-means and k-means++ suffer from the clusters being spherical in nature. What if the true cluster shapes look different? Next lecture: Kernel k-means and Agglomerative clustering!
- Clustering can help with cold-start problem. E.g. recommending new products!

Clustering in 2 dimensions - tSNE!

Data vinuelization method for clusters in 2 dimensions

Images

Let's say we had 1000 images and wanted to "cluster" them onto a super-grid of images so that similar images are closely placed on the super-grid and dis-similar are placed further away. k-means clustering will only get us half-way there!

"Soft dusking

Data Visualization: Stochastic Neighborhood Embeddings (SNE)!

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 9

February 2, 2023

7 / 53

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

3) Embedding - D [] 2) Neighboshoud Epp128 or EP236 DStochastic Skandonner

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close to each other and dis-similar images further away from each other.

Soft clustering We don't have a *K* here. But if you look at any neighborhood of the super grid of images - They will look similar! We can call this soft-clustering.

SNE

Similarity measure through Probabilities Let x_1, x_2, \ldots represent features of the data in their original dimensions Exclideen Distance (e.g. images). $p_{j|i} = \frac{e^{-\|x_i - x_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|_2^2/2\sigma_i^2}}$ parts of j being clove to i (o). ven il

Similarity measure through Probabilities

Let x_1, x_2, \ldots represent features of the data in their original dimensions (e.g. images). $p_{j|i} = \frac{e^{-\|x_i - x_j\|_2^2/2\sigma_i^2}}{\sum_{k \neq i} e^{-\|x_i - x_k\|_2^2/2\sigma_i^2}}$

Low-dimensional embedding Probabilities

MNIST digits data set

PCA on MNIST

MNIST tSNE embeddings

Estimating low-dimensional embeddings in SNE

Difference
A similarity measure for Probabilities - KL Divergence

$$KL(p||q) = \sum_{i=1}^{d} p_i \log \frac{p_i}{q_i}$$
 $\Rightarrow 0$
 $KL(p||q) = \sum_{i=1}^{d} p_i \log \frac{p_i}{q_i}$

Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

$$\mathit{KL}(p||q) = \sum_{i=1}^{d} p_i \log \frac{p_i}{q_i}$$

Loss function

$$L(y_1, y_2, \dots, y_N) = \sum_{i=1}^{N} KL(P_i || Q_i) = \sum_i \sum_j p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Minimity L = Obtain 2-dim embedding through
 $+ SNE$

EEP 596: Adv Intro ML || Lecture 9

e

Gradient and GD

Gradient

$$\frac{\partial L}{\partial y_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

Gradient and GD

Gradient

$$\frac{\partial L}{\partial y_i} = 2\sum_j (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

GD

$$y^{t+1} = y^t - \eta \frac{\partial L}{\partial y}(y^t)$$

ICE #1 (3 mins break out)

Let's say you want to create a video that has 1000 images (e.g. the one we looked at earlier) in a sequence so that the images in the video transforms smoothly from one to the next. How would you go about doing this if you learned a tSNE representation for the images?

DDDD*UUDD* 1122222222...

How do we create this grid?

(Univ. of Washington, Seattle)

EEP 596: Adv Intro ML || Lecture 9

February 2, 2023

16 / 53

tSNE Notebook Examples

Notebook Fashion MNIST Notebook

Word visualization based on word2vec

Hierarchical Clustering

Example of Hierarchy: Nouns

Lots of data is hierarchical by nature

Example of Hierarchy: Species

Motivation for Hierarchical Clustering

If we try to learn clusters in hierarchies, we can

- Avoid choosing the # of clusters beforehand (k)
- Use dendrograms to help visualize different granularities of clusters
- Allow us to use any distance metric
 - K-means requires Euclidean distance
- Can often find more complex shapes than k-means

Different shapes — Different algorithms

Types of Hierarchical Algorithms

Divisive, a.k.a. top-down

- Start with all the data in one big cluster and then recursively split the data into smaller clusters
 - Example: **recursive k-means**

- Start with each data point in its own cluster. Merge clusters until all points are in one big cluster.
 - Example: single linkage

Divisive Clustering

Start with all the data in one cluster, and then run k-means to divide the data into smaller clusters. Repeatedly run k-means on each cluster to make sub-clusters.

Wikipedia Example

Using Wikipedia

EEP 596: Adv Intro ML || Lecture 9

Hyper-parameters for Divisive Clustering

For decisive clustering, you need to make the following choices:

- Which algorithm to use
- How many clusters per split
- When to split vs when to stop
 - Max cluster size
 - Number of points in cluster falls below threshold
 - Max cluster radius
 - distance to furthest point falls below threshold
 - Specified # of clusters
 split until pre-specified # of clusters is reached

Agglomerative Clustering

This formula means we are defining the distance between two clusters as the smallest distance between any pair of points between the clusters.

Merge closest pair of clusters

EEP 596: Adv Intro ML || Lecture 9

Notice that the height of the dendrogram is growing as we group points farther from each other

EEP 596: Adv Intro ML || Lecture 9

Looking at the dendrogram, we can see there is a bit of an outlier!

The tall links in the dendrogram show us we are merging clusters that are far away from each other

Final result after merging all clusters

Agglomerative Clustering: Spiral and Donut!

With agglomerative clustering, we are now very able to learn weirder clusterings like

Dendrogram

x-axis shows the datapoints (arranged in a very particular order) y-axis shows distance between pairs of clusters

x-axis shows the datapoints (arranged in a very particular order) y-axis shows distance between pairs of clusters

Cut Dendrogram

Choose a distance D^* to "cut" the dendrogram

- Use the largest clusters with distance < D*</p>
- Usually ignore the idea of the nested clusters after cutting

41 / 53

Dendrogram ICE

ICE #2

How many clusters would we have if we use this threshold to cut?

Cut Dendrogram

Every branch that crosses D^* becomes its own cluster

Agglomerative Clustering — Hyper-parameters

For agglomerative clustering, you need to make the following choices:

- Distance metric $d(x_i, x_j)$
- Linkage function
 - Single Linkage:

$$\min_{x_i\in C_1, x_j\in C_2} d(x_i, x_j)$$

Complete Linkage:

$$\max_{x_i \in C_1, x_j \in C_2} d(x_i, x_j)$$

- Centroid Linkage

$$d(\mu_1,\mu_2)$$

- Others

Where and how to cut dendrogram

Linkage examples

ICE #3

Which linkage function is more likely to detect spiral clusters?

- Single Linkage
- Centroid Linkage
- Complete Linkage
- Any Linkage

Centroid Linkage Applied to Spiral

With agglomerative clustering, we are now very able to learn weirder clusterings like

Single Linkage Applied to Spiral

With agglomerative clustering, we are now very able to learn weirder clusterings like

Where Centroid Linkage Works!

EEP 596: Adv Intro ML || Lecture 9

Dunn Index - Metric that measures goodness of clusters

Dunn Index

$$D = \frac{\min_{1 \le i < j \le K} d(i, j)}{\max_{1 \le j \le K} d'(j)}$$

50 / 53

Dunn Index - Metric that measures goodness of clusters

Dunn Index

$$D = \frac{\min_{1 \le i < j \le K} d(i, j)}{\max_{1 \le j \le K} d'(j)}$$

ICE #4

Say you had a single-linkage and k-means clustering applied to a data set to produce K clusters each. Call them A and B. When would you say single-linkage produces better clustering than k-means?

- D(B) > D(A)

For visualization, generally a smaller # of clusters is better

For tasks like outlier detection, cut based on:

- Distance threshold
- Or some other metric that tries to measure how big the distance increased after a merge

No matter what metric or what threshold you use, no method is "incorrect". Some are just more useful than others.

Computing all pairs of distances is pretty expensive!

• A simple implementation takes $O(n^2 \log(n))$

Can be much implemented more cleverly by taking advantage of the **triangle inequality**

• "Any side of a triangle must be less than the sum of its sides"

Best known algorithm is $\mathcal{O}(n^2)$

Comparison of Clustering Algorithms

Quick comparison

	k-means	Agglomerative Clustering
Computation	O(Ndk)	$O(N^2d)$
Туре	Spherical	Arbitrary shapes

Few more points..

- Weigh computational complexity with complexity of clustering kmeans vs agglomerative
- Agglomerative distance choices yield different sets of clusters (single linkage vs centroid)
- Clustering in practice is an art
- However, quality of clustering can be evaluated E.g. through Dunn Index!