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Last time

1 k-means

2 k-means ++
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Today

1 Clustering k-means recap

2 Clustering Agglomerative Clustering

3 Data Visualization tSNE for Data Visualization
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k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



k-means summary

1 k-means - A generic clustering algorithm that can take N data points

and group them into K clusters based on Euclidean distance.

2 Clusters make sense if cluster division makes sense based on

Euclidean distance.

3 k-means has a computational complexity of O(Nd) for C step and

O(Nkd) for A step

4 Counter examples of clusters that may not be clustered well by

k-means. Can use other methods for this.

5 k-means++ - Improvement on k-means and yields better quality

clusters

6 Both k-means and k-means++ su↵er from the clusters being

spherical in nature. What if the true cluster shapes look di↵erent?

Next lecture: Kernel k-means and Agglomerative clustering!

7 Clustering can help with cold-start problem. E.g. recommending new

products!

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 4 / 53



Clustering in 2 dimensions - tSNE!
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Clustering for Data Visualization

Images

Let’s say we had 1000 images and wanted to ”cluster” them onto a

super-grid of images so that similar images are closely placed on the

super-grid and dis-similar are placed further away. k-means clustering will

only get us half-way there!
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Data Visualization: Stochastic Neighborhood Embeddings

(SNE)!
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SNE

High-level Idea

Find an embedding of images in 2 dimensions that put similar images close

to each other and dis-similar images further away from each other.

Soft clustering

We don’t have a K here. But if you look at any neighborhood of the super

grid of images - They will look similar! We can call this soft-clustering.
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SNE

Similarity measure through Probabilities

Let x1, x2, . . . represent features of the data in their original dimensions

(e.g. images).

pj |i =
e
�kxi�xjk22/2�2

i

P
k 6=i e

�kxi�xkk22/2�2
i

Low-dimensional embedding Probabilities

Let y1, y2, . . . represent features of the data in lower (embedded)

dimensions (e.g. 2 dimensions).

qj |i =
e
�kyi�yjk22/2�2
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P
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MNIST digits data set
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PCA on MNIST
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MNIST tSNE embeddings
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Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

KL(p||q) =
dX

i=1

pi log
pi

qi

Loss function

L(y1, y2, . . . , yN) =
NX

i=1

KL(Pi ||Qi ) =
X

i

X

j

pj |i log
pj |i
qj |i

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 13 / 53



Estimating low-dimensional embeddings in SNE

A similarity measure for Probabilities - KL Divergence

KL(p||q) =
dX

i=1

pi log
pi

qi

Loss function

L(y1, y2, . . . , yN) =
NX

i=1

KL(Pi ||Qi ) =
X

i

X

j

pj |i log
pj |i
qj |i

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 13 / 53



Gradient and GD

Gradient

@L

@yi
= 2

X

j

(pj |i � qj |i + pi |j � qi |j)(yi � yj)

GD

y
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= y
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(y

t
)
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Image Chain

ICE #1 (3 mins break out)

Let’s say you want to create a video that has 1000 images (e.g. the one

we looked at earlier) in a sequence so that the images in the video

transforms smoothly from one to the next. How would you go about doing

this if you learned a tSNE representation for the images?
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How do we create this grid?
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tSNE Notebook Examples

Notebook

Fashion MNIST Notebook
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https://www.kaggle.com/jeffd23/visualizing-word-vectors-with-t-sne/notebook
https://medium.com/analytics-vidhya/using-t-sne-for-data-visualisation-8a83f46fbad3


Word visualization based on word2vec
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Hierarchical Clustering
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Example of Hierarchy: Nouns
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Example of Hierarchy: Species

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 21 / 53



Motivation for Hierarchical Clustering
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Di↵erent shapes — Di↵erent algorithms
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Types of Hierarchical Algorithms
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Divisive Clustering
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Wikipedia Example

(Univ. of Washington, Seattle) EEP 596: Adv Intro ML k Lecture 9 February 2, 2023 26 / 53



Hyper-parameters for Divisive Clustering
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Agglomerative Clustering
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Agglomerative Clustering: Step 1
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Agglomerative Clustering: Step 2
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Agglomerative Clustering: Step 3
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Agglomerative Clustering: Repeat
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Agglomerative Clustering: Repeat
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Agglomerative Clustering: Spiral and Donut!
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Dendrogram
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Dendrogram
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Cut Dendrogram
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Dendrogram ICE

ICE #2

How many clusters would we have if we use this threshold to cut?

a 4

b 5

c 6

d 7
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Cut Dendrogram
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Agglomerative Clustering — Hyper-parameters
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Linkage examples
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Dendrogram ICE

ICE #3

Which linkage function is more likely to detect spiral clusters?

a Single Linkage

b Centroid Linkage

c Complete Linkage

d Any Linkage
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Centroid Linkage Applied to Spiral
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Single Linkage Applied to Spiral
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Where Centroid Linkage Works!
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Dunn Index - Metric that measures goodness of clusters

Dunn Index

D =
min1i<jK d(i , j)

max1jK d 0(j)

ICE #4

Say you had a single-linkage and k-means clustering applied to a data set

to produce K clusters each. Call them A and B . When would you say

single-linkage produces better clustering than k-means?

a D(A) > D(B)

b D(B) > D(A)
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Dendrogram
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Dendrogram
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Comparison of Clustering Algorithms

Quick comparison

k-means Agglomerative Clustering

Computation O(Ndk) O(N
2
d)

Type Spherical Arbitrary shapes

Few more points..

a Weigh computational complexity with complexity of clustering -

kmeans vs agglomerative

b Agglomerative distance choices yield di↵erent sets of clusters (single

linkage vs centroid)

c Clustering in practice is an art

d However, quality of clustering can be evaluated - E.g. through Dunn

Index!
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