
1

(Byte Sized) Machine
Learning

Lecture Notes
Simplified and with examples

Dr. Karthik Mohan

ADVANCED INTRO TO ML, LECTURE NOTES

HTTPS://BYTESIZEML.GITHUB.IO/ML2023/

These lecture notes are part of the course taught at University of Washington, Seattle in Winter 2023.

First release, January 2023

Contents

1 Introduction to Machine Learning . 5

1.1 High-level Motivation 5

1.2 Motivating Example 5

1.3 What is Machine Learning? 5

1.4 Methods used in Machine Learning 6

1.5 Exercises 6

2 Linear Regression . 7

2.1 Motivating Example 7

2.2 What is Linear Regression? 7

2.3 Methodology behind Linear Regression 7

2.4 Delving into the Math behind Linear Regression 8

2.5 Exercises 8

3 Data Pre-processing & Overfitting . 9

3.1 Motivation 9

3.2 Types of pre-processing 9

3.3 Data Splits 10

3.4 Overfitting 10

3.5 Preventing Overfitting 10

4

3.6 Exercises 10

4 Derivatives and Gradients . 13

4.1 Motivation 13

4.2 What is a gradient? 13

4.3 Hiking and Gradients! 13

4.4 Gradient Descent 14

4.5 Exercises 14

5 Gradient Descent and its variants . 15

5.1 Motivation 15

5.2 (Batch) Gradient Descent 15

5.3 Stochastic Gradient Descent 15

5.4 mini-Batch SGD 16

5.5 GD vs mini-Batch SGD 16

5.6 Learning Rate Schedulers 16

5.7 Exercises 17

6 Classification Fundamentals . 19

6.1 Binary vs Multi-Class Classification 19

6.2 Multi-Class vs Multi-Label Classification 19

6.3 Linear Models 19

6.4 Evaluating Classifiers 20

6.5 Exercises 20

1. Introduction to Machine Learning

1.1 High-level Motivation

Data is in abundance in today’s world. Every leading tech company is focused or moving towards
data-driven decision making. Machine Learning in the real-world, bridges the gap between data and
making data-driven decisions.

1.2 Motivating Example

Consider that you want to teach a kid to recognize objects, and specifically to recognize apples.
1. So you show the kid a red apple and say ‘This is an apple.’ The kid picks up on the color red

and learns to associate it with apple.
2. You then show the kid a ’red cube’ and ask, ’Is this an apple?’ - The kid says, ‘Yes that’s an

apple, because it is red in color.’
3. You then clarify, that an apple has to be circular in shape.
4. You then show the kid a red circular ball, and ask, ’Is this an apple?’ The kid says, ’Yes,

because it is red and circular in shape.’
5. You clarify again, that apples are circular but with a depression at the top.
6. The kid, by now, has understood, that an apple has to be circular in shape but with a depression

at the top, and also red in color.
7. With 4 examples, the kid has quickly learned to recognize any apple in the wild!
8. To test the kid’s understanding, you show the kid a green apple, and ask if it’s an apple? The

kid responds, ’No! It’s not an apple because it’s green in color!’
9. You shake your head and decide you will clarify this to the kid once you finish a business

meeting that’s about to start in a minute!

1.3 What is Machine Learning?

Here are three distinct but complementary defenitions of machine learning:

6 Chapter 1. Introduction to Machine Learning

1. Machine Learning is a set of methods, tools, algorithms and frameworks to help us solve
real-world problems with data.

2. Machine Learning are tools to learn useful patterns from data sets, which can then be used for
decision making in the real-world

3. Machine Learning helps machines learn from data to interact with the real world as humans
would (this definition is closer to that of Artifical Intelligence)

1.4 Methods used in Machine Learning
Methods in machine learning can be put in 3 broad categories: Supervised Learning, Unsupervised
Learning and Reinforcement Learning. In this course, we focus extensively on the first two, which
can be used to solve a majority of business problems that need machine learning.

1.5 Exercises
1. What phenomenon would help us understand why the kid couldn’t identify a green apple as an

apple and instead mistakenly identify it as a lime?

2. Linear Regression

2.1 Motivating Example

Consider that you want to predict the weight of a person, given their height! How would you do it?
Is it generally true that taller a person is, the more they weigh? On an average, you might answer
affirmative to this question. However, there are people who are tall and weigh less than average.
Conversely, there are people who are short who weight more than average. But on an average, maybe
we can derive a relationship between weight and height of a person!

2.2 What is Linear Regression?

In the above example, if the relationship we derive was ‘linear’ - We get linear regression! Regression
is essentially a way to explain an output (weight in this example), as a function of the inputs (height
in this example). What’s an example of a linear function?

f (w) = wx+ c

Here, f as a function of w is linear in w. w could represent a weighting term, x could be the height
of the person and f (w) predicts the height! What if now, instead of just using height to predict the
weight, you also use BMI (body mass index) and perhaps resting heart rate (a measure of fitness)?
We might get a more accurate fit. Now x is no longer just a scalar, it becomes a vector x and it
represents height, BMI, and resting heart rate. Our output, prediction, is still the weight. So this
changes, the linear regression model:

f (w) = wT x+ c

2.3 Methodology behind Linear Regression

You can fit any line through the data and perhaps it could help explain the relationship between the
height and weight of a person. And perhaps, it won’t! But the line of best fit, would certainly best

8 Chapter 2. Linear Regression

explain this relationship between the input and the output. Why? Because it is the line of best fit.
Consider Figure 1 below. The red line represents the line of best fit. But look at all the other lines,
they may explain the relationship between height and weight, but they certainly don’t look like the
best fit!

2.4 Delving into the Math behind Linear Regression
Let ŷ = f (w) represent the prediction of the Linear Regression model. We want, the prediction to
be as close to the ground truth y as possible for all possible data points. In other words,

min
w∈Rd

1
N

N

∑
i=1

(yi− ŷi)
2

also equivalent to,

min
w∈Rd

1
N

N

∑
i=1

(yi−wT xi)
2

also equivalent to,

min
w∈Rd

1
N
∥y−Xw∥2

2

where ∥z∥2
2 = ∑i z2

i is the Euclidean Norm of z.

2.5 Exercises
1. Suppose you have m = 23 training examples with n = 5 features (excluding the additional

all-ones feature for the intercept term, which you should add). For the given values of m and
n, what are the dimensions of w, X, and y in this equation? The normal equation is

w = (XT X)−1XT y.

(a) w is 5x1, X is 23x5, y is 23x1.
(b) w is 5x5, X is 23x5, y is 6x1.
(c) w is 6x6, X is 6x23, y is 6x1.
(d) w is 6x1, X is 23x6, y is 23x1.

2. Which of the following is the reason for using feature scaling(data normalization)?
(a) Because the calculation of normal equation will have no matrix inversion problems(i.e,

singularity matrix).
(b) Because solving the normal equation will be more efficient.
(c) Because when optimizing by gradient descent, the speed of convergence will be faster.
(d) Because solving the normal equation will be more accurate than without feature scaling.

3. Data Pre-processing & Overfitting

3.1 Motivation
Raw data is something you download from a webpage as a “data set”. Pre-Processed data is
where a sequence of transformations are applied to the data to get it into shape before its ready to go
through a ML model! ML models can’t usually be applied to raw data unless they are already in a
good shape for training. Some amount of pre-processing is usually necessary to get the raw data
ready for ML training

3.2 Types of pre-processing
1. Missing Data Imputation: If the data has missing values for some of the examples of

an attribute/feature - It can be filled (e.g. through mean or median imputation) for numeric
attributes. There are other methods for data imputation that can also be used depending on the
data set and the percentage of missing data in the data set.

2. Numeric vs Categorical Features: Some attributes are inherently numerical and can be
treated as such. For instance, “square footage” is a numeric attribute when we want to do
housing price prediction. Other attributes are inherently categorical. For instance, “location”
of a house. There are also attributes that fall in the gray area - And can be modeled as a numeric
feature or a categorical feature. For instance, “number of bedrooms” can be a categorical
feature or can also be modeled as a numeric feature. Treating features as categorical or numeric
is referred to as modeling choice.

3. Data Normalization: This is another important pre-processing that is done on data sets, esp.
when attributes/features have a big variability in the magnitude. For instance, population of a
neighborhood can run in tens of thousands, whereas the number of bedrooms in a home is
single digit. In this scenario, each of the features can be normalized to be within a certain
range, e.g. 0 and 1 or −1 and 1.

4. Feature Selection/Feature Pruning: This can also be a pre-processing step that can be
applied before ML models are run. Sometimes, you may have access of hundreds of thousands
of attributes as possible features for your model. This may heavily increase the complexity of

10 Chapter 3. Data Pre-processing & Overfitting

Figure 3.1: Fitting curve to a set of 2D points

your model and may also prove unnecessary. In this case, one can do attribute/feature selection
through pruning the features by frequency of usage and/or by relevance/importance/correlation
to the prediction.

3.3 Data Splits
In Machine Learning, data sets are split randomly into train, validation, and test. Why? train data
gets used for training, test data is a proxy for unseen data on which we want to evaluate our ML
model on. And validation data allows us to fine-tune our trained model so the model doesn’t overfit
and can perform well on unseen data. The typical percentage of splits between train/validation/test
are 80:10:10 or 70:10:20

3.4 Overfitting
Overfitting happens for a Machine Learning model, when it performs well on train data but has a
significantly worse performance on test data.

3.5 Preventing Overfitting
There are a few popular strategies that can be used to avoid overfitting:

1. Increase the data set size, N
2. Decerease the feature set size, d through feature selection or feature pruning
3. Regularization using ℓ1 (sparsity promoting) or ℓ2 regularization. When ℓ1 regularization is

used for linear regression, it’s referred to as Lasso Regression. When ℓ2 regularization is used
for linear regression, it’s referred to as Ridge Regression.

4. ℓ1 regularization and feature selection: Lasso is a regularizer that also does feature selection
for free!

5. Overfitting strategies for Deep learning: These look a little different, and we will discuss
it when we get to the chapter on Deep Learning. Dropouts and Early Stopping are some
strategies to prevent overfitting with deep learning.

3.6 Exercises
1. You are given a set of 2-D points (time, values), and you want to fit a curve to the points such

that the curve can capture the relationship between time and values. In the 3 plots below,
which of the following best describes how well the curves fit the points?

(a) 1st plot fits well, 2nd plot overfits, 3rd plot underfits.
(b) 1st plot overfits, 2nd plot underfits, 3rd plot fits well.

3.6 Exercises 11

Figure 3.2: Training and Test error curves for two models

(c) 1st plot underfits, 2nd plot fits well, 3rd plot overfits.
(d) 1st plot underfits, 2nd plot overfits, 3rd plot fits well.

2. You trained 2 models - A and B on a dataset, the training and test error with respect to number
of iterations are shown below, which of the following is the best description for 2 models?

(a) model A is a better fitting than B because it has lower training error.
(b) model A is performing better because it takes fewer iterations to converge.
(c) model B is less overfiting than model A.
(d) model B is performing better only because the gap between training and test error is

smaller.

4. Derivatives and Gradients

4.1 Motivation

Believe it or not, the word, gradient is fundamental to most popular machine learning algorithms
you will find on the market. Take any library, like sci-kit learn or a deep learning framework like
PyTorch, under the hood - They use gradients, as a fundamental to learn from the data! Your favorite
object detection method in ML, learns from data through gradient descent. So let’s learn more on
computing gradients.

4.2 What is a gradient?

Gradient is nothing but a collection of partial derivatives of a function. Derivative of a single variable
function is something you would have encountered in a basic calculus course. For instance, what
is the derivative of f (w) = w2? It’s 2w. Now extrapolate derivative of function of single variable
w ∈ R to a derivative of a function with respect to a vector, w ∈ Rd and we get the gradient.

So what’s the gradient of f (w) = ∥w∥2
2? It’s 2w. The gradient of a function with respect to the

vector has the same dimensions as the vector!

4.3 Hiking and Gradients!

Gradients have a cool property: At any given point in space, the gradient of a fucntion tells you the
direction to move in, so you increase the function value in the fastest possible way! Imagine, you
were to go hiking up a mountain. Usually, hiking trails have switchbacks - These are not the steepest
ways to ascend the mountain. However, they are safer! Imagine, you shortcut the switchbacks and
went straight up the mountain - Now, that would be the direction in which the gradient would be
pointing to!

14 Chapter 4. Derivatives and Gradients

4.4 Gradient Descent
The main idea with gradients is that the gradient points to the direction of steepest ascent. So
negative gradient points to the direction of steepest descent. So if you were feeling adventurous
while hiking down a mountain - You would probably following the path of negative gradient!
Gradient Descent Algorithm is an iterative algorithm that keeps taking steps in the direction of
negative gradient until you hit a local minimum.

4.5 Exercises
1. Let f (w) = 1T w+∥w∥2

2. What’s the gradient of f with respect to w? Note that 1 is a vector
of ones.

(a) 2w
(b) 1+w
(c) 1+2w
(d) 1

2. Let f (w) = ∥w−w0∥2
2. Find the gradient of f with respect to w. (Hint: Use first principles to

derive this. Compute ∂

∂w1
f to begin with).

3. You run gradient descent for 15 iterations, with learning rate = 0.3 and compute loss function
J(w) after each iteration. You find that the value of J(w) decreases slowly and is still decreasing
after 15 iterations. Based on this, which of the following conclusions seems most plausible?

(a) is large, try to decrease =0.1 would be better.
(b) is small, try to increase =1.0 will make the model converge faster.
(c) is appropriate and no need to change.
(d) J(w) cannot converge no matter what you pick.

4. Suppose you have a dataset with m = 50 examples and n = 200000 features for each example.
You want to use multivariate linear regression to fit the parameters w to our data. Should you
prefer gradient descent or the normal equation?

(a) Normal equation because it is computationally efficient.
(b) Gradient descent because it’s more efficient to compute.
(c) Normal equation because the number of examples are small.
(d) Gradient descent because it’s more accurate than normal equation.

5. Gradient Descent and its variants

5.1 Motivation
Gradient Descent is one of the fundamental algorithms in Mathematical Optimization. Since most
of machine learning is based on minimizing a loss function, gradient descent is also fundamental
to machine learning and how machines consume and learn from data. In this chapter, we look
at different variations of gradient descent algorithms and also learning rate schedulers for these
algorithms.

5.2 (Batch) Gradient Descent
Batch Gradient Descent, as the name implies, is an optimization method for learning that goes
through the entire batch of training data in one pass or iteration. For the algorithm to converge to a
local optimum solution, it may however take several iterations probably in the order of hundreds.
Let us say we want to minimize L(w) - Loss Function and find the best ŵ that does that.

1. Initialize w = w0 (random initialization)
2. Gradient Descent w← w− lr ∗∇L(w)
3. Iterate Repeat step 2 until w converges, i.e.

∥wk+1−wk∥/∥wk∥ ≤ 10−3

Here, lr represents the learning rate. ∇L(w) is the gradient of loss function L

5.3 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD), is a randomized optimization algorithm for optimizing any
machine learning loss function for which a gradient can be computed. SGD takes a step in the
direction of negative gradient, learning from one data point at a time (as compared to Batch GD,
which learns from all data points in each step). The randomization or stochasticity comes from how
the single data point gets picked! Let L(w) = ∑

N
i=1 Li(w) where Li is a function of only the ith data

point (xi,yi) and parameter w.

16 Chapter 5. Gradient Descent and its variants

Figure 5.1: GD vs mini-batch SGD

1. Initialize w0 (randomize)
2. Pick index i at random between 1 and N!
3. Gradient Descent wk+1← wk− lr ∗∇Li(wk)
4. Iterate Repeat step 2 and 3 until w converges, i.e.

∥wk+1−wk∥/∥wk∥ ≤ 10−3

5.4 mini-Batch SGD
Let L(w) = ∑

N
i=1 Li(w) where Li is a function of only the ith data point (xi,yi) and parameter w. Let

B be the number of batches and k be the batch size.
1. Initialize w = w0 (randomize)
2. Pick a batch of k data points at random between 1 and N: i1, i2, . . . , ik!
3. Gradient Descent wk+1← wk− lr ∗∑

k
j=1 ∇wLi j(w

k)
4. Iterate Repeat step 2 and 3 until w converges, i.e.

∥wk+1−wk∥/∥wk∥ ≤ 10−3

5.5 GD vs mini-Batch SGD
How does gradient descent compare against mini-batch SGD? We share a comparison of the
covergence behavior in training in Figure 5.1. You can also look at a comparison of GD and
mini-batch SGD along different axis in Table 5.1. In summary, mini-batch SGD carries over all the
good properties of batch GD while also not having the exhorbitant memory footprint that GD can
have with large scale datasets (100k+ data points).

5.6 Learning Rate Schedulers
Learning rate schedulers tell you what the learning rate looks like in each iteration of GD/SGD.
Learning rate is one of the most fundamental hyper-parameters in traininig a ML model. Often,
learning rates are already optimized under the hood and you may not need to do anything about
it when using a library in sci-kit learn or Pytorch. Learning rates effect how much a ML model
learns and how quickly it converges to the local optimum. Too small a learning rate and there isn’t
sufficient progress and too big a learning rate can also make the model learning stall. Some of the

5.7 Exercises 17

LightBlue Factor GD Mini-batch SGD
Data All per iteration Mini-batch (usually 128 or 256)

Randomness Deterministic Stochastic
Error reduction Monotonic Stochastic
Computation High Low

Memory big data Intractable Tractable
Convergence Low relative error Few “passes” on data

Local Minima traps Yes No

Table 5.1: GD vs mini-batch SGD along different axis

learning rate schedulers apply the same learning rate for every parameter. Others, such as ADAM
apply a different learning rate for different parameters - These are called adaptive learning rates.

1. Constant Learning Rate: Here, a constant step size is used through out the training. For
instance, s = 1 where w← w− s×∇l(w) and l represents the loss function.

2. Diminishing Leanring Rate: A simple diminishing learning rate is st = 1/t where t is the
iteration number. So the gradient descent update looks like: wt+1← wt − st∇l(wt)

3. Learning Rate with Restarts: This is diminishing learning rate with a restart i.e. set st = s0

when t%T = 0, where T is the spacing between restarts. For example: If T = 20, after 20
iterations, the learning rate is reset to its initial value. This learning rate scheduler ensures that
the learning rate doesn’t become too small.

4. ADAM: Another popular learning rate scheduler for SGD is ADAM. This one ensures that
the learning rate is normalized based on the gradient magnitude.

5.7 Exercises
1. Gradient Descent Plots for Linear Regression:

Consider the linear regression model: y = Xw+ e where X is the data-matrix, w are the
parameters, e is measurement error/noise and y is the target that we want to predict. In the
housing prices example, y is the selling price of a home, X is a matrix of features where, each
row represents a home. We will consider using random numerical data for this exercise. Let
X be generated using a standard normal distribution (randn function in numpy) where
X ∈ R2000×1000. Generate, w̃ ∈ R1000 based on a standard normal as well. Let y = Xw̃+ e,
where e∼ 0.05∗N (0,1). So here e is a 5% random noise added to the data. Your raw data is
now (X ,y). Split (X ,y) into train, validation and test (random splits). Train a linear regression
model using, (Xtrain,ytrain. Implement (vanilla) Gradient Descent from scratch for this (do
not use sci-kit learn). Plot the loss function 1

N ∥Xtrainw− ytrain∥2
2 as a function of number of

iterations. Note that the gradient of ∥Xw− y∥2
2 is 2XT (Xw− y). What learning rate scheduler

seems to work best for training (definitely try constant learning rate and diminishing learning
rates). If you have set things up right, you should the loss function go down with number of
iterations of Gradient Descent. How does the validation loss change with/without the use of ℓ2
regularization? Let ŵ be your estimated parameter vector. What’s the value: ∥ŵ− w̃∥2/∥w̃∥2,
and is this relative error small for your model?

2. Notice that the GD algorithm you implemented in the previous exercise converges perhaps
in 100 iterations or less. Why do people use mini-batch SGD in practice if GD has good
convergence properties?

18 Chapter 5. Gradient Descent and its variants

(a) It’s hard to compute gradients for gradient descent
(b) It’s computationally expensive to train GD as compared to mini-batch SGD
(c) It’s memory inefficient or intractable to load a million data points for GD as compared

mini-batch SGD
(d) None of the above

6. Classification Fundamentals

6.1 Binary vs Multi-Class Classification
Classification is a machine learning problem, where we want to categorize objects into distinct
classes. For instance, if we have an self-driving car that wants to look at objects on the road - It
could probably categorize them into cars, trucks, pedestrians or other. As another example, an email
server may classify incoming emails into spam or not spam. Spam classification is an example of
binary classification, as there are exactly two possible classes. The self-driving car application is
an example of multi-class classification as there are more than 2 classes to categorize objects into.
Classification differs from Regression in that, the target type is categorical instead of numeric, as for
regression. This small change in the problem definition, changes the algorithms and methods that
get used for classification as compared to regression.

6.2 Multi-Class vs Multi-Label Classification
Multi-Class classificaiton refers to classifying a data point into a single, distinct class. Multi-Label
classification, however can attribute more than one class to a given data point. As an example, in
data sets that have images of either a human, a dog or a cat - The machine learning problem can be
modeled as a multi-class classification problem with 3 classes.

6.3 Linear Models
Linear models in machine learning refer to models where the output can be expressed wT x where,
w is the weight/parameter vector and x are the features. Such a model is called linear, because
the output is a linear function of the features. Linear models are some of the simplest models
for classification or regression. They also make for good baselines (i.e. starter models) - Linear
Regression for Regression problems and Logistic Regression for Classification problems. Due to
being so simple, linear models rarely overfit, unless there is a paucity or scarcity of data as comapred
to the number of parameters. However, linear models can underfit, or in other words - They may not
be able to leverage the full power of data as compared to non-linear models.

20 Chapter 6. Classification Fundamentals

Predicted Positive Predicted Negatives
Positives (P) TP (True Positives) FN (False Negatives)
Negatives (N) FP (False Positives) TN (True Negatives)

Table 6.1: Matrix of Positives and Negatives

6.4 Evaluating Classifiers

Consider the matrix of positives and negatives as in Table 6.1. The rows represent the ground
truth - How many positive examples and how many negative examples exist in the test set. The
columns represent the predictions - How many examples were predicted positive and how many
were predicted negative. The interplay between the rows and columns leads to true positives (TP),
false negatives (FN), false positives (FP), and true negatives (TN).
Accuracy is an easy way to measure the performance of a classifier - How many predictions did the
model get right divided by the total number of examples. In Table 6.1, this refers to the sum of the
diagonals divide by the total number of examples, i.e Accuracy = T P+T N

P+N . However, accuracy can
be a wrong measure when there is class imbalance.

1. Precision (Pr) = TP/(TP + FP)

2. Recall (R) = TP/(TP + FN) = TP/P

3. F1-score = 2×Pr×R
Pr+R

4. Accuracy (Acc) = (T P+T N)/(P+N)

6.5 Exercises

1. Confusion Matrix: Let’s say we computed a Confusion Matrix for a Spam Classifier on an
imbalanced data set (more non-spam emails or negatives than spam emails or positives) and
we obtained:

Predicted Positive Predicted Negatives
Positives (P) 50 100
Negatives (R) 250 500

Then, Accuracy, Pr, R and F1 are as follows:

(a) 61%,0.16,0.33,0.22
(b) 51%,0.33,0.16,0.22
(c) 51%,0.16,0.33,0.22
(d) 61%,0.33,0.16,0.22

2. Multi-Class or Multi-Label? A social media website wants to automatically tag all the
relevant people on every photo that users post to their wall. This is a use-case for which one of
the following machine learning problems:

6.5 Exercises 21

(a) Multi-class classification
(b) Multi-label classification
(c) Linear Regression
(d) Non-Linear Regression

3. Class Imbalance: Which of the following strategies will not help handle the issues related to
class imbalance in datasets:

(a) Up-sampling the minority class
(b) Down-sampling the majority class
(c) Down-sampling both the majority and minority class
(d) Up-sampling the majority class
(e) Using accuracy as a metric for classification

	Introduction to Machine Learning
	High-level Motivation
	Motivating Example
	What is Machine Learning?
	Methods used in Machine Learning
	Exercises

	Linear Regression
	Motivating Example
	What is Linear Regression?
	Methodology behind Linear Regression
	Delving into the Math behind Linear Regression
	Exercises

	Data Pre-processing & Overfitting
	Motivation
	Types of pre-processing
	Data Splits
	Overfitting
	Preventing Overfitting
	Exercises

	Derivatives and Gradients
	Motivation
	What is a gradient?
	Hiking and Gradients!
	Gradient Descent
	Exercises

	Gradient Descent and its variants
	Motivation
	(Batch) Gradient Descent
	Stochastic Gradient Descent
	mini-Batch SGD
	GD vs mini-Batch SGD
	Learning Rate Schedulers
	Exercises

	Classification Fundamentals
	Binary vs Multi-Class Classification
	Multi-Class vs Multi-Label Classification
	Linear Models
	Evaluating Classifiers
	Exercises

