Recommender Systems | Lecture 11

Dr. Karthik Mohan

UW, Seattle

August 3, 2022

Logistics

Assignment 3 due next Wednesday

Logistics

- Assignment 3 due next Wednesday
- Project checkpoint due next Monday
- Openion Please pick a time slot for your team to discuss project propsoal if you haven't yet!

Logistics

- Assignment 3 due next Wednesday
- Project checkpoint due next Monday
- Opening Please pick a time slot for your team to discuss project propsoal if you haven't yet!
- Anything else?!

Today

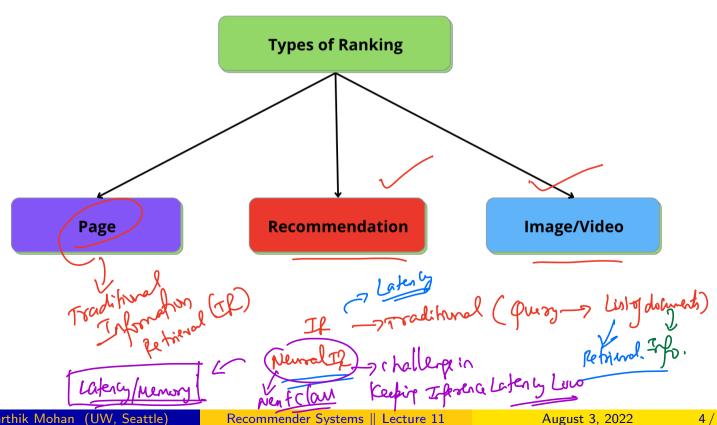
Today

• Ranking loss function and metrics

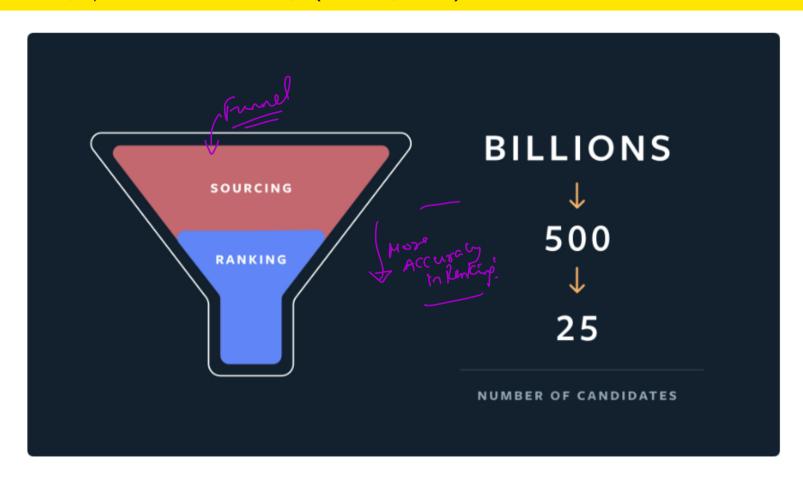
Today

- Ranking loss function and metrics
- Page Ranking and Ranking Algorithms

Ranking Problems

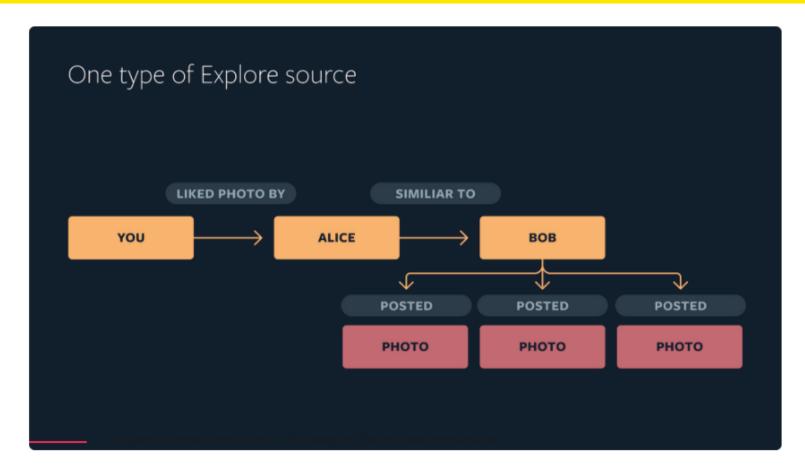


Image/Video Ranking (Instagram)



Instagram Recommendations

Image/Video Ranking (Instagram Candidate Generation)



Instagram Recommendations

Image/Video Ranking (Amazon Video)

Behavior-based Popularity Ranking on Amazon Video

With the growth in the number of video streaming services, providers have to strive hard to make relevant content available and keep customers engaged. A good experience would help customers discover new and popular videos to stream with ease. Customer streaming behavior tends to be a strong indicator of whether they found a video engaging. Aggregate customer behavior serves as a useful predictor of popularity. We discuss the use of past streaming behavior to learn patterns and predict a video's popularity using tree ensembles.

CCS Concepts: • Information systems \rightarrow Recommender systems; Content ranking.

Additional Key Words and Phrases: video streaming; popularity; recommendations

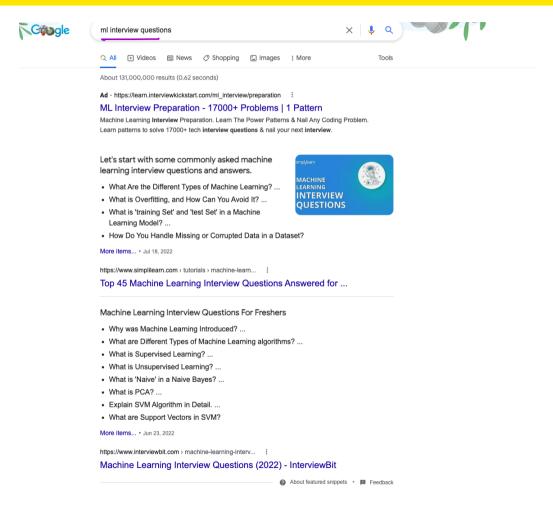
ACM Reference Format:

. 2020. Behavior-based Popularity Ranking on Amazon Video. In Fourteenth ACM Conference on Recommender Systems (RecSys '20), September 22–26, 2020, Virtual Event, Brazil. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3383313.3411555

1 INTRODUCTION

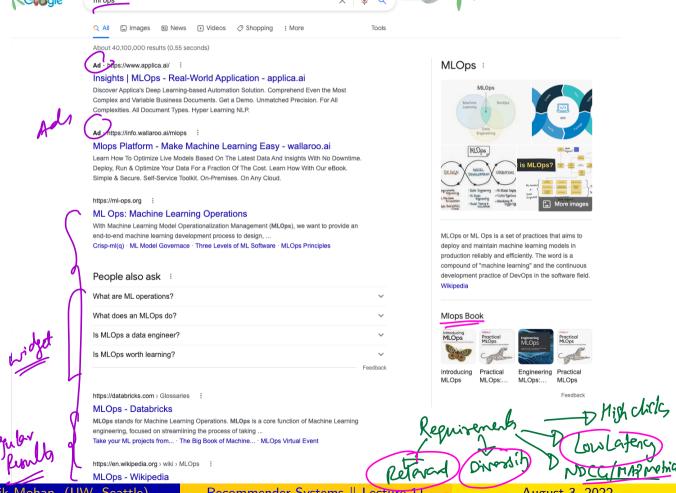
On streaming platforms customers use two main approaches to find videos—search and discovery. Customers can enter a query to search for a video or browse the catalog to discover content. Streaming platforms use customer preferences,

Page/Search Ranking



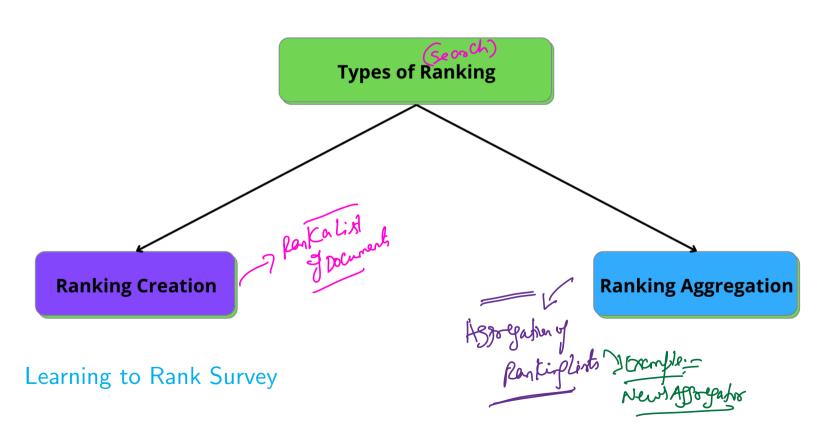
8 / 21

Page/Search Ranking

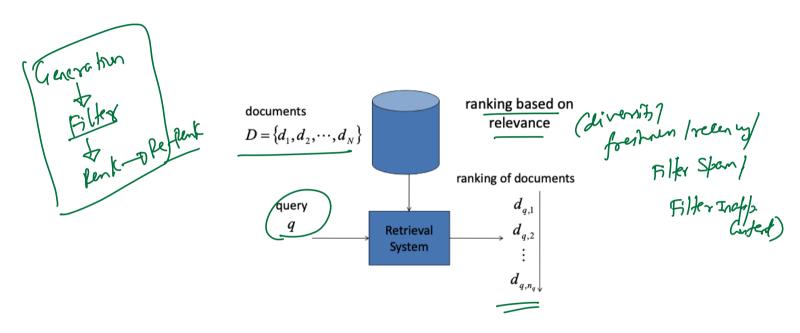


Dr. Karthik Mohan (UW, Seattle)

Types of Ranking



Search Ranking - Document Retrieval

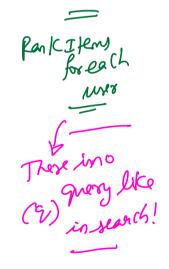


Learning to Rank Survey

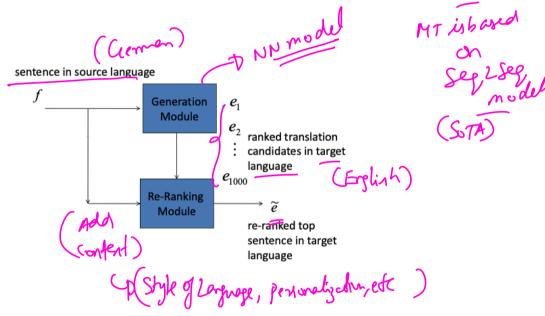
Recommendations Ranking - Collaborative Filtering

	Item1	Item2	Item3		ItemN
User1	5	4			
User2	1		2		2
		?	?	?	
UserM	4	3			

Learning to Rank Survey



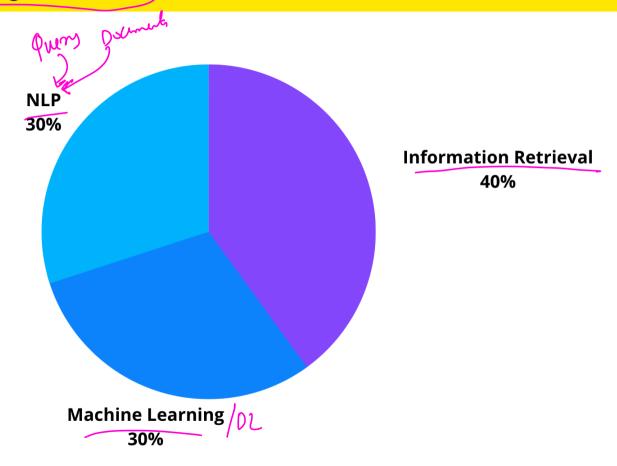
Re-ranking in Machine Translation



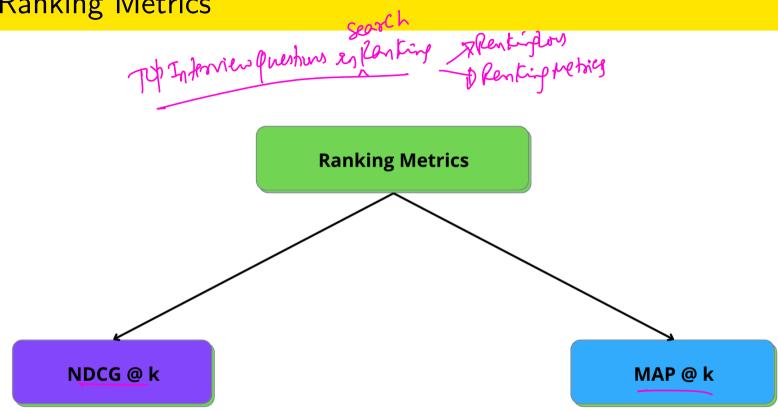
Learning to Rank Survey

(Traditional It)
(ancepts

Learning to Rank

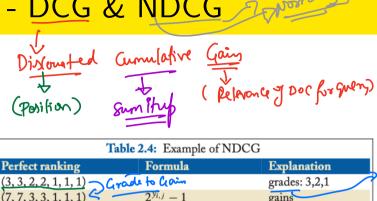


Ranking Metrics



Learning to Rank Survey

Ranking Metric - DCG & NDCG



(11,1 91,2, 91,10
	Fixt doc for gury 3
6	1 4/
	13,1 d3,2d
	10x

Enpul)

Querres Tr

ND CG(F)

=0(a(k)

Imperfect ranking	Formula
$(1,1,1,\cdots)$	NDCG(k)
$(1/7, 1/11.41, 1/12.91, \cdots)$	$DCG_{max}^{-1}(k)$
$(7, 11.41, 12.91, \cdots)$	$\sum_{j:\pi_i(j)\leq k} \frac{2^{\pi_i j}-1}{\log(\pi_i(j)+1)}$
$(1, 0.63, 0.5, \cdots) \longrightarrow$	$1/\log(\pi_i(j)+1)$
	$2^{y_{i,j}}-1$
(3,3,2,2,1,1,1) (7,7,3,3,1,1,1)	i to Gain

-,	r
$\frac{\tau_{i,j}-1}{\tau_{i}(j)+1)}$	DCG scores
	normalizing factors
	NDCG scores
	Explanation
	1 2 2 1

position discounts

1	OCUP F	(2, 3, 2, 3, 1, 1, 1)
Ğ		(3, 7, 3, 7, 1, 1, 1)
Yavo	, 25.24	$(1, 0.63, 0.5, \cdots)$
0	the MUCAUCYCE O	$(3, 7.41, 8.91, \cdots)$
الم السال	a loss ((r)	$(1/7, 1/11.41, 1/12.91, \cdots)$
Mexyman	1- MCGUETO	$(0.43, 0.65, 0.69, \cdots)$
" alue	₽°	
Minyon	for mochitics of	Higher the good
(K)		1. 3 - 4).

	grades: 3,2,1
$2^{y_{i,j}}-1$	gains
$1/\log(\pi_i(j)+1)$	position discounts
$\sum_{j:\pi_i(j) \le k} \frac{2^{y_{i,j}} - 1}{\log(\pi_i(j) + 1)}$ $DCG_{max}^{-1}(k)$	DCG scores
$DCG_{max}^{-1}(k)$	normalizing factors
NDCG(k)	NDCG scores

NOCA(K)	$(1/7, 1/11.41, 1/12.91, \cdots)$ $(0.43, 0.65, 0.69, \cdots)$	$DCG_{max}^{-1}(k)$ $NDCG(k)$	normalizing factor NDCG scores	rs 2 DCG6	94
Grades -	Higher the good	Mose relever	of the document		j=(Discourt(j)
folkelevence ga Do Cum		human ann	o and a	e levant /	Selver ()

for green i

Gains F- Function of Grade (enformation)

Dr. Karthik Mohan (UW, Seattle)

ICE #1

DCG computation

For a query, "show me top 10 thriller movies of this century" - a search engine returns 10 results: d_1, d_2, \ldots, d_{10} , where d_j represents document/page j. Let the grade of the documents be given as follows: $\{3, 2, 1, 5, 2, 4, 5, 6, 7, 4\}$. The DCG@3 for the results of the search is closest to:

- **1**1
- **2** 21
- **3**1
- **4**1

Gain (K)= 2 grade(K)

ICE #2

NDCG computation

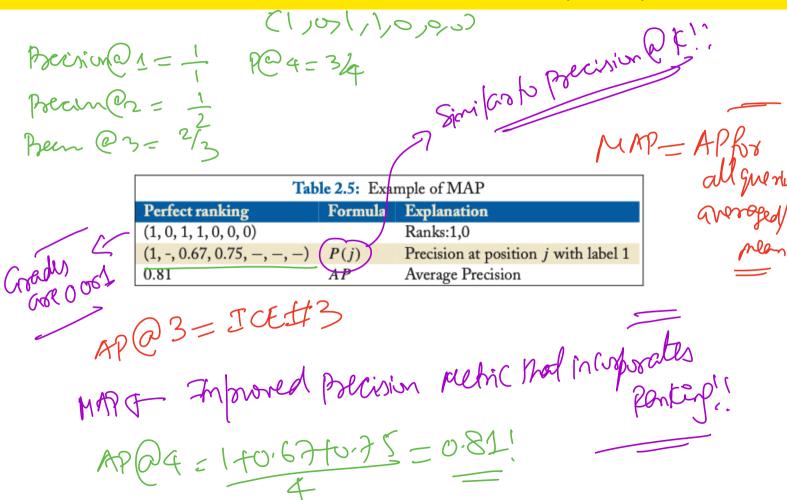
For a query, "show me top 10 thriller movies of this century" - a search engine returns 10 results: d_1, d_2, \ldots, d_{10} , where d_j represents document/page j. Let the grade of the documents be given as follows: $\{3, 2, 1, 5, 2, 4, 5, 6, 7, 4\}$. The NDCG@1 for the results of the search is closest to:

- 0.05
- **2** 0.1
- **3** 0.15
- **4** 0.2

DCGO 1 2 23 -1

DGGman@1d 27-1=03

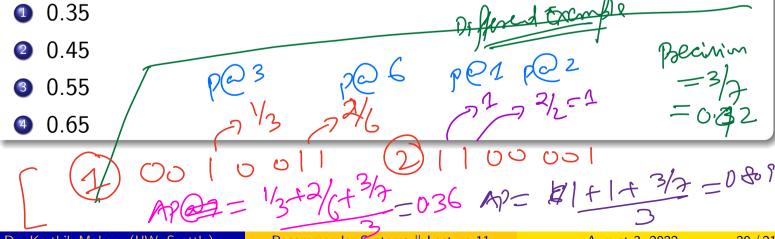
Ranking Metric - Mean Average Precision (MAP)



ICE #3

AP (Average Precision) computation

For a query, "show me top 10 thriller movies of this century" - a search engine returns 10 results: d_1, d_2, \ldots, d_{10} , where d_j represents document/page j. Let the normalized grade of the documents be given as follows: $\{1,0,1,1,0,0,1,0,1,0\}$. The AP@3 for the results of the search is closest to:



Next Class

A NDCA and oppron. NDCA

- Ranking Loss functions
- Neural models for Search Ranking and Re-ranking