Recommender Systems Lecture 1

Summer 2022 (Dr. Karthik Mohan)

Univ. of Washington, Seattle

June 24 2022

Instruction Team

- Instructor Dr. Karthik Mohan (Amazon, Meta, Faculty at ECE)
- TA Jinlin Xiang (CV, Incremental Learning, Neuro AI Lab, Phd student ECE)

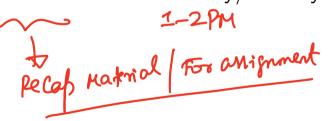
Motivation for Recommender Systems

- Where you have a web based product sales, you need recommendations
- 2 Top companies deploy simple to sophisticated recommendation systems depending on their needs
- Recommendations drives sales, revenue and customer base (e.g. Amazon)
- Example: Amazon, Walmart, Facebook, YouTube, Twitter and so many more!
- Scalability issues are rampant and bring in interesting solutions to Recommender systems Company with Jorge Customers with Sook products
- The course will discuss real case-studies and help students get hands on in thinking about building scalable recommender systems
- The course will be focused on concepts and practical aspects of recommender systems. Hence all assessments will be through conceptal programming assignments and mini-projects hosted on Kaggle.

Week by Week Break Down (Tentative)

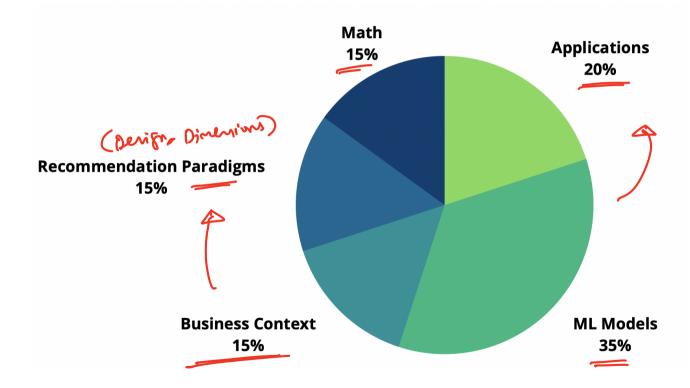
		_
Week	Lecture Material	Assignment
1	Intro to Recommender Systems	Sambazon case study
2	Recommender System Baselines	Shopify case study
3	Matrix Factorization methods	Twitter case study
4	Matrix Factorization methods	Twitter case study
5	Deep Learning based recommendations	Walmart case study
6	ML Pipeline for Recommender systems	Amazon case study
7	Real-time Recommendations	Amazon Fresh case study
8	Diversity and Relevance	Final Project
9	Scaling Recommender systems	Final Project
10)	Special Topics	Final Project
Sun	ner 9 Final Presentation	

Lectures on Monday and Wednesday 4 pm pst

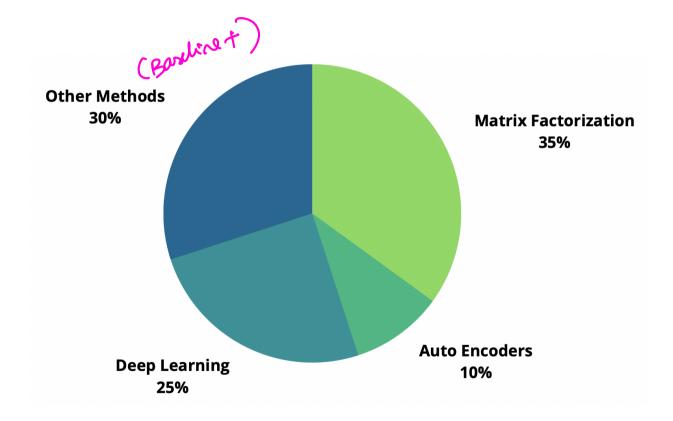


- Lectures on Monday and Wednesday 4 pm pst
- Monday lecture is in-person and Wednesday is online.

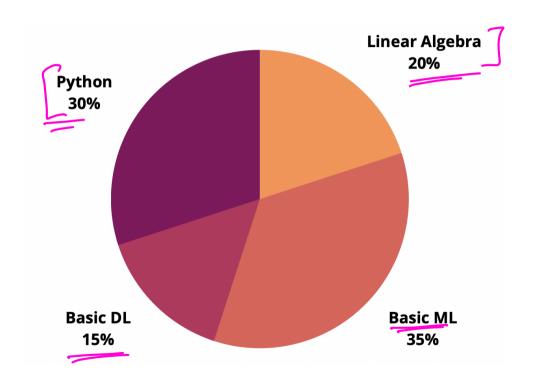
July 5-12 proved of Recorded freall lectures.

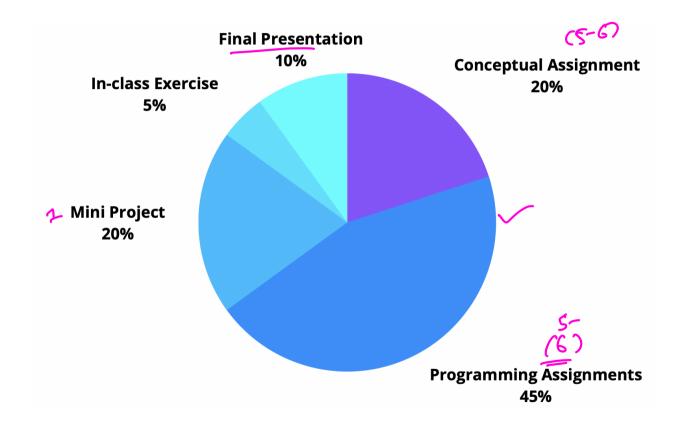

(2 Lectures)

- Lectures on Monday and Wednesday 4 pm pst
- Monday lecture is in-person and Wednesday is online.
- TA Quiz Section: Saturday/Sunday

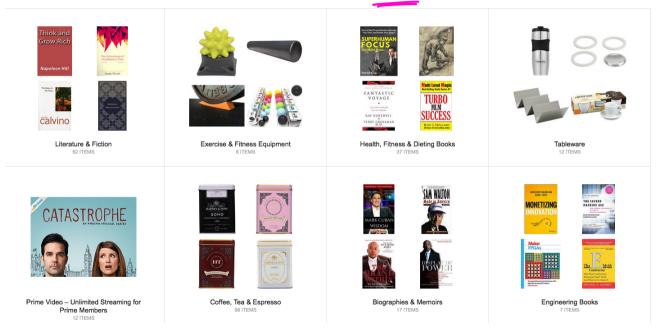


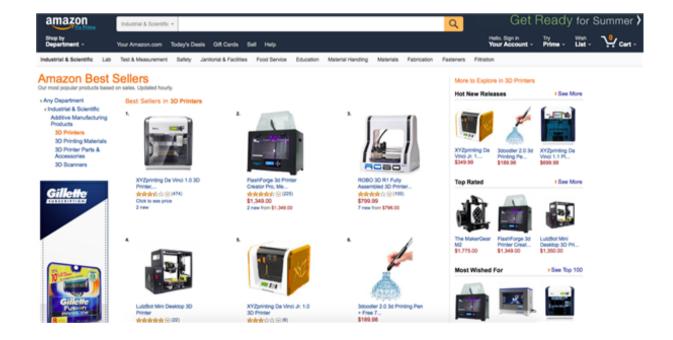
- Lectures on Monday and Wednesday 4 pm pst
- Monday lecture is in-person and Wednesday is online.
- TA Quiz Section: Saturday/Sunday
- TA Office Hours: The 4-5 pm pst 200m
- Karthik Office Hours: Monday pm, EEB M258


Content

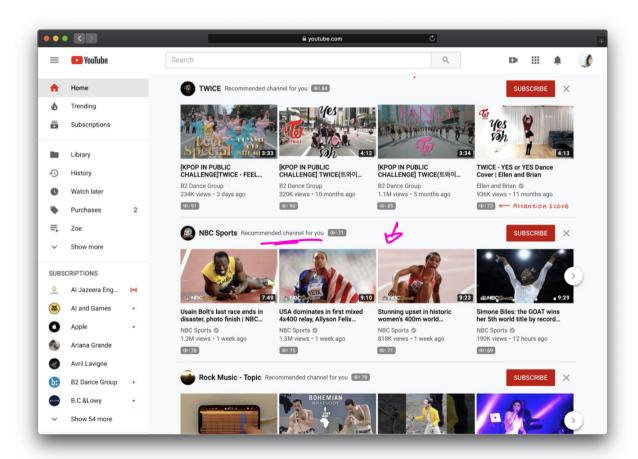

ML Methods

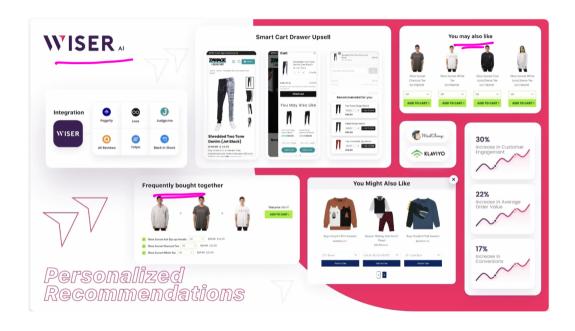
Pre-requisites


Assessments

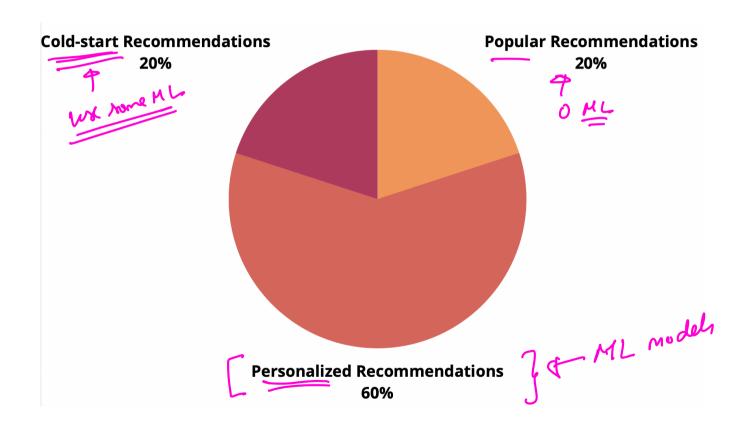

Real World Recommender System Examples

Amazon Recommendations

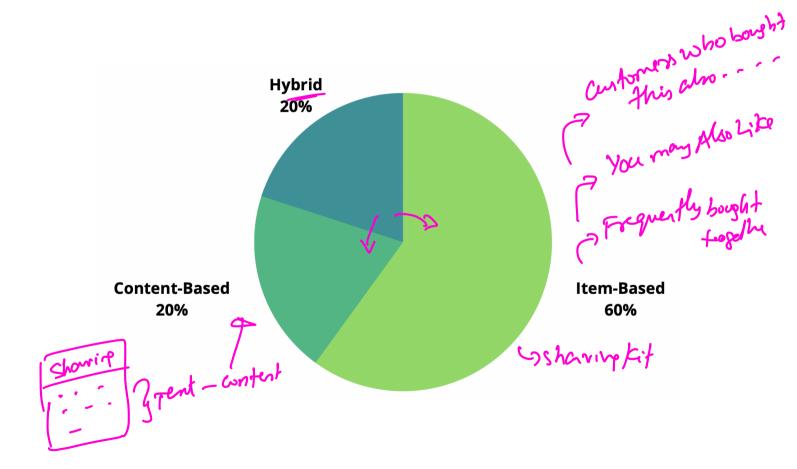

Recommended for you, Thomas


Amazon Recommendations

YouTube Recommendations



Shopify Recommendations

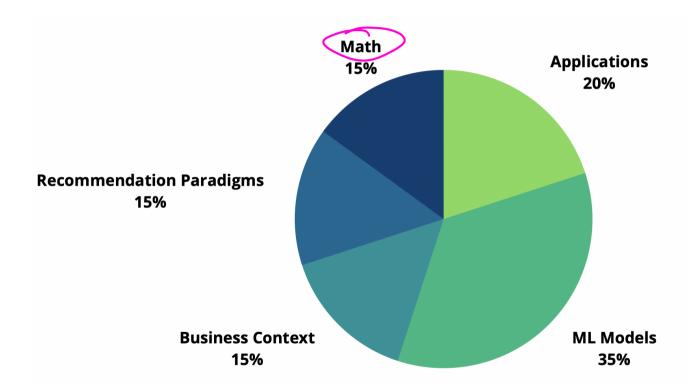

Introduction to Recommender Systems

Recommender Types

Recommenders


Collaborative filtering

COLLABORATIVE FILTERING Read by both users Similar users Read by her, recommended to him!


CONTENT-BASED FILTERING Read by user Similar articles

Recommended to user

Item based recommendations

Content

Linear Algebra Background

Linear Algebra fration

1. Scalary $d \in \mathbb{R}$ $d = \mathbb{S}$ $d = \mathbb$

3. rectos Asithmetic Vector $d_1, d_2 \in \mathbb{R}^d$ $d_1 + d_2 = \int d_1 + d_2 d_1 \in \mathbb{R}^d$ $d_1 + d_2 = \int d_1 d_2 + d_2 d_1 \in \mathbb{R}^d$ BD = BDI ERD

SEIR SERD BDI ERD

BDI BDI ERD

matrices - Curl 1 X1 X2 X3... Xd

Curl 2 X1 X2 X3... Xd

May th pata mahin X, ER? XIERN

 $X = \begin{bmatrix} X_1 & X_2 & X_3 & --- & Xd \end{bmatrix}$ $Y = \begin{bmatrix} Y_1 & Y_2 & Y_3 & --- & Yd \end{bmatrix}$ $X + Y = \begin{bmatrix} X_1 + Y_1 & X_2 + Y_2 & X_3 + Y_3 & --- & Xd + Yd \end{bmatrix}$ Addisp by Columns

5. Matsin multiplication xy = ? $\begin{bmatrix} -\chi_1 T - \\ -\chi_2 T - \\ -\chi_1 T - \end{bmatrix} \begin{bmatrix} \chi_1 \chi_2 - -\chi_d \\ \chi_1 \chi_1 \chi_2 - -\chi_d \end{bmatrix} = \begin{bmatrix} \chi_1 T \chi_1 \chi_1^T \chi_2 - -\chi_1^T \chi_d \\ \chi_1 T \chi_1 \chi_1^T \chi_2 - -\chi_1^T \chi_d \end{bmatrix}$ $\begin{bmatrix} \vdots \\ = x_1 \\ x_1 \end{bmatrix} = x_1 \\ = x_1 \\$

G. Matrin - vector multiplication

X J S ERD GERNXA GDalaMatrin 1. $\begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \vdots \\ x_N \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_N \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_N \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_N \end{bmatrix}$ $\begin{array}{ll} \lambda \cdot \left[\begin{array}{ccc} \chi_1 & \chi_2 & \cdots & \ddots & \chi_J \end{array} \right] y \\ &= & \chi_1 y_1 + \chi_2 y_2 + \cdots - + \chi_d y_d \end{array}$ man wad

Man

Dot products D Item-Item Similarity (Frequently Bought Togethin) Dod (Ifen 1, Item 2) > Dod (Ikm 1, Item 3) I_1_T_2= I_11_T_21+T_12_T_22 II ERD $T_{1} = \begin{pmatrix} T_{11} \\ T_{12} \\ \vdots \\ T_{N} = \begin{pmatrix} T_{21} \\ T_{22} \\ \vdots \\ T_{N} \end{pmatrix}$ promatize det product = Corine Similarity!

Mector nomitude g a rector or a matrix! $||T_1||_2 = \sqrt{(T_1)^2 + (T_1)^2 + \cdots + (T_n)^2}$ Matin Noon e ||X||F= / 5 (xij)2 1) Cosine Similarity Di) Convergence of a ML alforithm
Ot Ott 10t+1-0t1/2 < t 110t/l2 3) Distance behveen cluster centen Similarily -> Dot fooducts Distencer -> Norms of difference of rectors

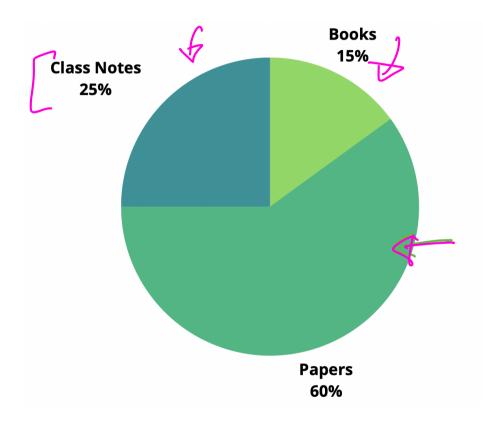
9. Nent Lechure

SVD?

SSVD?

Sgen De Comp.

Croadient Arithmetra


Prack frospagation

Gradient Composition.

Assignment 1

- Programming Assignment: Python and Numpy module coverage for Linear Algebra + Coverage on metrics and feature extraction
- 2 Conceptual Assignment: Concepts on Linear and Matrix Algebra

Reference materials

Independent Study Credits

Next Lecture

- More Linear Algebra and ML Background
- Baseline models for Recommender Systems

Join Discord!! (check Enail)