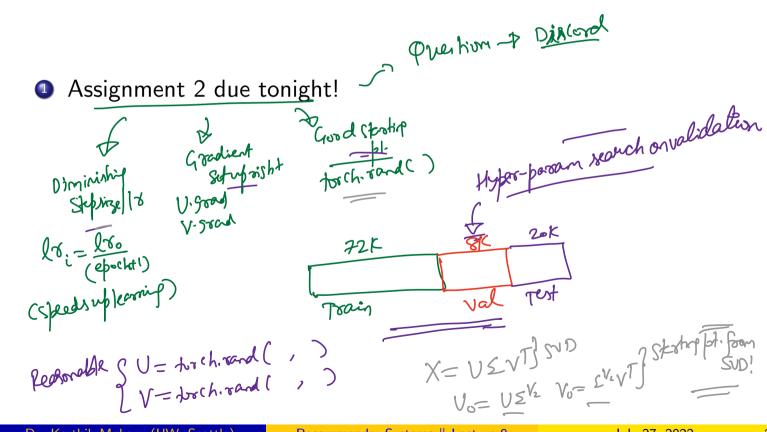
Recommender Systems | Lecture 9

Dr. Karthik Mohan

UW, Seattle

July 27, 2022

Logistics



Logistics

- Assignment 2 due tonight!
- Please pick a time slot for your team to discuss project propsoal if you haven't yet!

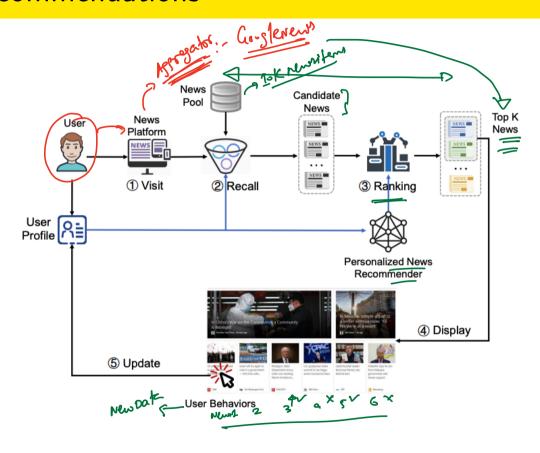
Logistics

- Assignment 2 due tonight!
- Please pick a time slot for your team to discuss project propsoal if you haven't yet!
- Anything else?!

Today

News Recommendations Case Study
Amproxi3

News Recommendations



Reference paper

Challenges for news recommedation systems

Contrast with a friedrict on Amagon (Ayearor 2 years)

• News articles have a short shelf life (maybe a couple days?)

Challenges for news recommedation systems

- News articles have a short shelf life (maybe a couple days?)
- So huge cold start problem of new news articles that are waiting to be recommended

Challenges for news recommedation systems

- News articles have a short shelf life (maybe a couple days?)
- So huge cold start problem of new news articles that are waiting to be recommended
- No explicit ratings of news articles by users (like for movies lens data set)

 (contrart: Amazon Penicum (21 tour 105 start)

 But have

 (ich

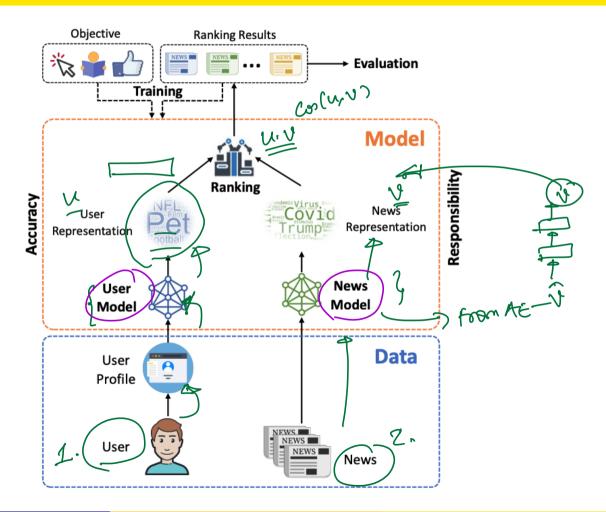
Delick Data: - Interpert on a new article

Breakout #1

Building your news recommender systems

You are a data scientist working on a news recommendation system. You notice that there are news articles that suddenly become "hot" but also seem to taper off in views after a couple of days. You also notice that there are a large number of news articles that don't seem to get many hits and also taper off on views. You are tasked with making these "cold" and "warm" news articles become more "hot" through recomemndations and personalization. However as we discussed, there are challenges to this due to the cold start problem. Brainstorm your approach to building a reasonable news recommender system in this kind of a scenario. What specific machine learning approaches would you take and what could be an architecture for your model?

News Recommendation generic Modeling approach



Breakout #2

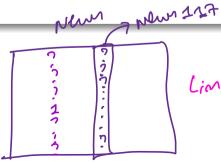
Pros/Cons of Collaborative Filtering

One obvious method to obtain user and news representations is to use a collaborative filtering approach. We can have a matrix with perhaps 1's and zeros. 1 if a user has viewed a news article and 0 if not. Brainstorm the pros/cons of using this approach for news recommendations. What unique challenges would you encounter? How would you improve upon this

approach?

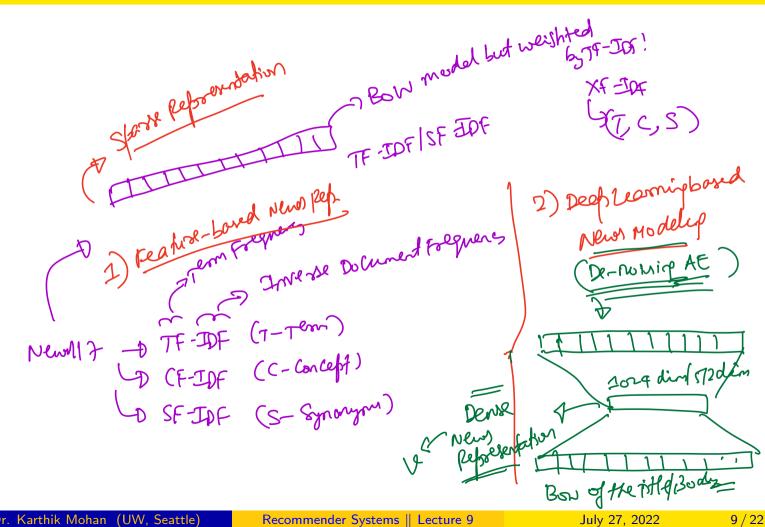
(ontent info.
(ontent info.
(ontent info.
wern

Title, body, wern

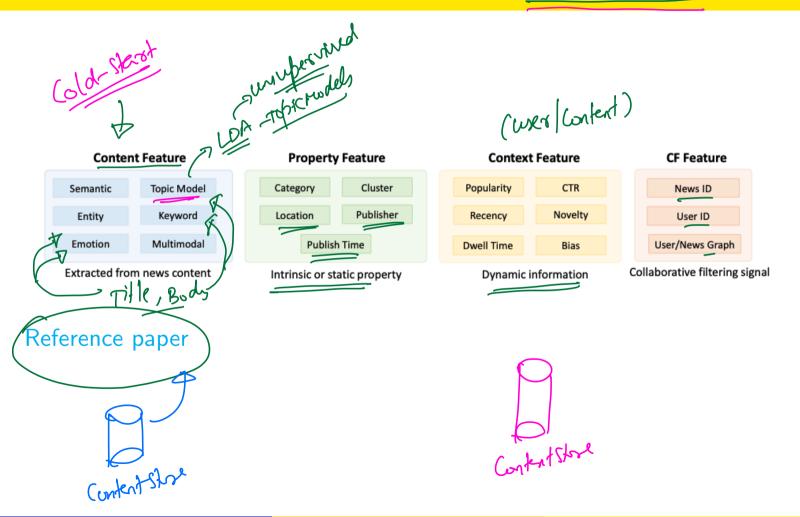


New - sid = 117 - 17 117? Limitely id = 12 (behaver) id, Content(id) - 1 Vid (content) id, Content(id) - 1 Vid bhaver)

News Modeling



News Recommendation Features and Feature Stores



News Recommendation Papers by Features used

	_
CN	$\boldsymbol{\eta}$
>1	ン

Features for News Modeling	References
BOW/YE IDE*	[58][16][140][17][67][68][18][30][11][55][25][99][202][142][163]
BOW/XF-IDF*	[236][7][47][14][59][94][95][132][154][147][148][123][201][129]
Entitu/Vormond	[58][16][140][17][67][68][18][30][11][109][55][187][75][118][141][108][84] [26][28]
Entity/Keyword	[163][236][7][47][244][13][14][15][44][85][95][191][89][195]
01	[104][109][82][28][41][25][122][171][28][182][48][112][111][193][106][244][13]
Cluster/Category	[59][83][95][180][234][123][56][228][186][189]
Topic Distribution	[52][109][143][249][108][51][50][171][112][111][69][114][132][150][191][69]
Location	[187][143][229][75][193][88][201]
<u>Publishe</u> r	[75][117][244][228]
Popularity	[172][109][55][82][187][28][75][249][25][28][111][83][88][94][51][75]
CTR	[25]
Recency	[104][109][55][187][28][75][249][171][89][28][111][244][234][201]
Novelty	[50][47]
Dwell Time	[22][55][232][75][249][244][75]
Time Stamp	[75][41][25][43][225][228]
Emotion/Sentiment	[147][148]
Bias	[150]
Knowledge Graph	[84][236]
News/User Graph	[118][141][108][50][192][112][114][152][56][186]
Ontology	[58][16][140][17][67][68][18][30][11][202][142][163][173][48][14][15][44]
Visual Information	[131]

Engapernet

Reference paper

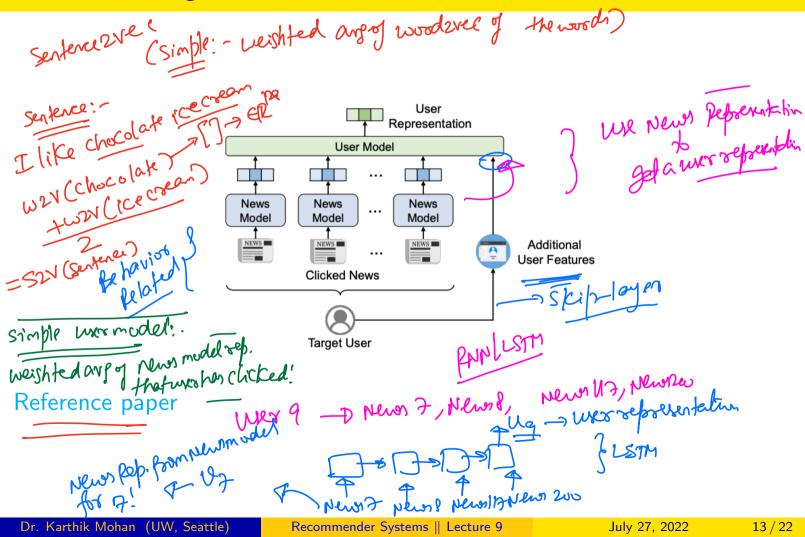
News Recommendation Models in literature

Method	Year	Information Used	Model	
EBNR [144]	2017	Body	Autoencoder Doczyec+NN Doczyec+NN Word 2VR	
RA-DSSM [96]	2017	Title+Body	Doczyec+NN S La 1000 2VE	
Khattar et al. [97]	2017	Title+Body	Doc2vec+NN) (V/)	
3-D-CNN [98]	2017	Title+Body	Word2vec	
WE3CN [90]	2018	Title+Body	2-D CNN	
NPA [204]	2019	Title	CNN+Personalized Attention	
NRMS [207]	2019	Title	Self-Attention+Attention	
NRHUB [206]	2019	Title	CNN+Attention	
DAINN [238]	2019	Body	CNN+Dynamic Topic Model	
FIM [196]	2020	Title	Dilated CNN	
NRNF [209]	2020	Title	Transformer+Attention	
FedRec [158]	2020	Title	CNN+Self-Attention+Attention	
CPRS [213]	2020	Title+Body	Self-Attention+Attention	
UniRec [218]	2021	Title	Self-Attention+Attention	
FeedRec [215]	2021	Title	Transformer+Attention	
FairRec [221]	2021	Title	Transformer+Attention	
EEG [243]	2021	Title+Abstract+Body	CNN+Attention	
AMM [240]	2021	Title+Abstract+Body	+Body PLM	
RMBERT [81]	2021	Title PLM		
UNBERT [241]	2021	Title PLM+Attention		
PLM-NR [214]	2021	Title	PLM+Attention	
SFI [239]	2021	Title	CNN+Attention	
TempRec [216]	2021	Title	Transformer	
WG4Rec [176]	2021	Title+Word Graph	GNN+Attention	
CNE-SUE [136]	2021	Title+Abstract	LSTM+Self-Attention+Co-Attention	

Reference paper

News Article is a Document NIT Dogvec VIIT TO VIII

User Modeling



User Modeling Papers

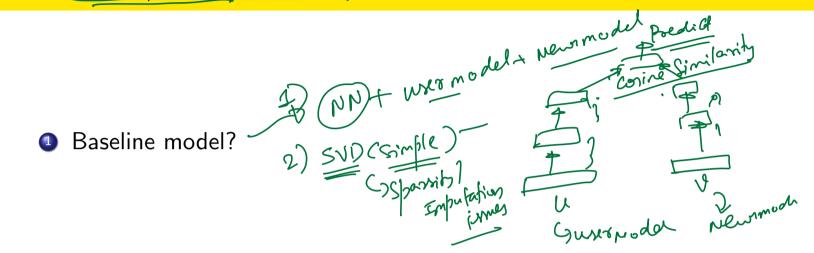
Method	Year	Information Used	Model
EBNR [144]	2017	News Click	GRU (Lency LSgri) ~
RA-DSSM [96]	2017	News Click	Bi-LSTM+Attention
Khattar et al. [97]	2017	News Click	Exponential-decayed Average -> V-17017
3-D-CNN [98]	2017	News Click	Bi-LSTM+Attention Exponential-decayed Average Word2vec
Park et al. [149]	2017	News Click	(LSIM)
WE3CN [90]	2018	News Click	3-D CNN
DKN [197]	2018	News Click	Candidate-Aware Attention
Gao et al. [49]	2018	News Click	Candidate-Aware+Multi-Head Attention
Saskr [24]	2019	News Click	Self-Attention+Candidate-Aware Attention
NAML [203]	2019	News Click	Attention
TANR [205]	2019	News Click	Attention
NRMS [207]	2019	News Click	Self-Attention+Attention
Liu et al. [119]	2019	News Click	Time-decayed Average
DAN [248]	2019	News Click	LSTM+Self-Attention+Candidate-Aware Attention
KRED [121]	2020	News Click	Attention
TEKGR [103]	2020	News Click	Candidate-Aware Attention
FIM [196]	2020	News Click	3-D CNN
FedRec [158]	2020	News Click	Self-Attention+Attention+GRU
SentiRec [212]	2020	News Click	Transformer+Attention

Reference paper

Breakout #3

How much data to use?

Let's say you have a user who has browsing news articles on a news aggregator webpage for a couple of years. How much of this browsing data would you consider using for your news recommender model (e.g. all of it, some of it, select portions, higher level abstractions, etc) and why? What kinds of features are important to capture from the news browsing history data? What are some unique challenges to user modeling that come up in news recommender systems?

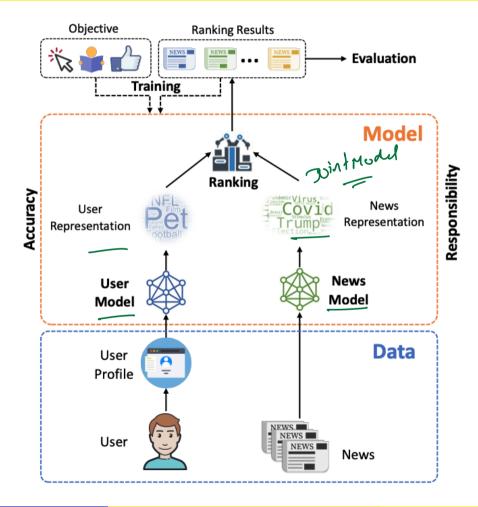


- Baseline model?
- Can cast as a binary classification problem (where click is positive and negative sampling gives negatives)

D will have noise

- Baseline model?
- 2 Can cast as a binary classification problem (where click is positive and negative sampling gives negatives)
- 3 As we want to model user clicking news articles Both user and news representations (models) get learned jointly | show latertapace

- Baseline model?
- 2 Can cast as a binary classification problem (where click is positive and negative sampling gives negatives)
- Solution As we want to model user clicking news articles Both user and news representations (models) get learned jointly
- 4 Has advantage of coordinating representations between the news and user models better in the learning process vs learning them separately



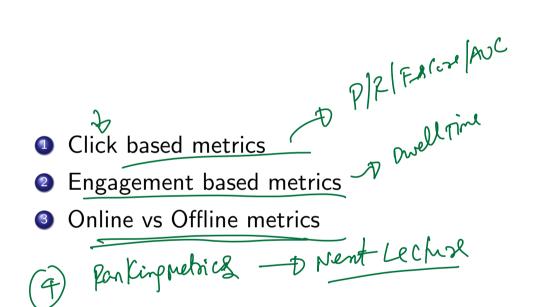
User Modeling unique dimensions

- Short shelf life of news
- Fine-grained interaction of users with topics
- User can be thought of as a document!
- More Temporal diversity as compared to movie recommendations

(on trust with product recommendations

Metrics for News Recommendations

Metrics for News Recommendations



Assignment on Kaggle on news recommendations! Due Date:
 August 10

- Assignment on Kaggle on news recommendations! Due Date:
 August 10 (2 weeks from today)
- Your submissions will be ranked on leaderboard by Kaggle (supposed to be fun and motivating!)

- Assignment on Kaggle on news recommendations! Due Date:
 August 10
- Your submissions will be ranked on leaderboard by Kaggle (supposed to be fun and motivating!)
- Try out baseline recommenders (SVD based)

- Assignment on Kaggle on news recommendations! Due Date:
 August 10
- Your submissions will be ranked on leaderboard by Kaggle (supposed to be fun and motivating!)
- Try out baseline recommenders (SVD based)
- Try out any of the NN based user and news models for better model performance!

- Assignment on Kaggle on news recommendations! Due Date:
 August 10
- Your submissions will be ranked on leaderboard by Kaggle (supposed to be fun and motivating!)
- Try out baseline recommenders (SVD based)
- Try out any of the NN based user and news models for better model performance!
- Starter notebook provided for helping process the data and understand it better

Next Class

- Ranking vs Recommendations problem
- Ranking example applications
- Ranking Loss functions
- Learning to Rank (classic ML problem in Search)
- Sanking metrics (different from recommendation metrics)